Enabling Reconfigurable All-Liquid Microcircuits via Laplace Barriers to Control Liquid Metal

A. Watson, Kareem S. Elassy, T. Leary, M. A. Rahman, A. Ohta, W. Shiroma, C. Tabor
{"title":"Enabling Reconfigurable All-Liquid Microcircuits via Laplace Barriers to Control Liquid Metal","authors":"A. Watson, Kareem S. Elassy, T. Leary, M. A. Rahman, A. Ohta, W. Shiroma, C. Tabor","doi":"10.1109/mwsym.2019.8700919","DOIUrl":null,"url":null,"abstract":"Liquid metals such as gallium alloys have a unique potential to enable fully reconfigurable RF electronics. One of the major concerns for liquid-metal electronics is their interaction with solid-metal contacts, which results in unwanted changes to electrical performance and delamination of solid-metal contacts due to atomic diffusion of gallium at the liquid/solid interface. In this paper, we present a solution to this problem through way of liquid-metal/liquid-metal RF connections by implementing La-place barriers, which control fluid flow and position via pressure-sensitive thresholds to facilitate physical movement of the fluids within the channels. We demonstrate RF switching within the channel systems by fabricating, testing, and modeling a reconfigurable RF microstrip transmission line with integrated Laplace barriers which operates between 0.5–5 GHz. This approach opens the potential for future all-liquid reconfigurable RF electronic circuits where physical connections between solid and liquid metals are minimized or possibly eliminated altogether.","PeriodicalId":6720,"journal":{"name":"2019 IEEE MTT-S International Microwave Symposium (IMS)","volume":"7 1","pages":"188-191"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mwsym.2019.8700919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Liquid metals such as gallium alloys have a unique potential to enable fully reconfigurable RF electronics. One of the major concerns for liquid-metal electronics is their interaction with solid-metal contacts, which results in unwanted changes to electrical performance and delamination of solid-metal contacts due to atomic diffusion of gallium at the liquid/solid interface. In this paper, we present a solution to this problem through way of liquid-metal/liquid-metal RF connections by implementing La-place barriers, which control fluid flow and position via pressure-sensitive thresholds to facilitate physical movement of the fluids within the channels. We demonstrate RF switching within the channel systems by fabricating, testing, and modeling a reconfigurable RF microstrip transmission line with integrated Laplace barriers which operates between 0.5–5 GHz. This approach opens the potential for future all-liquid reconfigurable RF electronic circuits where physical connections between solid and liquid metals are minimized or possibly eliminated altogether.
通过拉普拉斯势垒实现可重构全液体微电路以控制液态金属
液态金属如镓合金具有独特的潜力,可以实现完全可重构的射频电子器件。液态金属电子学的主要问题之一是它们与固体金属触点的相互作用,由于镓在液/固界面的原子扩散,这会导致电性能的不必要变化和固体金属触点的分层。在本文中,我们提出了一种解决方案,通过实现La-place屏障,通过压力敏感阈值控制流体的流动和位置,以促进流体在通道内的物理运动,通过液体-金属/液体-金属射频连接的方式来解决这个问题。我们通过制造、测试和建模可重构的射频微带传输线来演示信道系统内的射频开关,该传输线具有集成的拉普拉斯屏障,工作在0.5-5 GHz之间。这种方法开辟了未来全液体可重构射频电子电路的潜力,其中固体和液态金属之间的物理连接被最小化或可能完全消除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信