Unsupervised learning of depth and ego-motion with absolutely global scale recovery from visual and inertial data sequences

Q2 Engineering
Ya-ru Meng, Qiyu Sun, Chongzhen Zhang, Yang Tang
{"title":"Unsupervised learning of depth and ego-motion with absolutely global scale recovery from visual and inertial data sequences","authors":"Ya-ru Meng, Qiyu Sun, Chongzhen Zhang, Yang Tang","doi":"10.1080/23335777.2020.1811386","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we propose an unsupervised learning method for jointly estimating monocular depth and ego-motion, which is capable to recover the absolute scale of global camera trajectory. In order to solve the general problems of scale drift and scale ambiguity of monocular camera, we fuse geometric movement data from inertial measurement unit (IMU), and use Bi-directional Long Short-Term Memory (BiLSTM) to extract temporal features. Besides, we add a lightweight and efficient attention mechanism, Convolutional Block Attention Module (CBAM), to Convolutional Neural Networks (CNNs) to complete the extraction of image features. Considering the scenes with severe illumination changes, ambiguous structures, moving objects and occlusions, especially scenes with progressively-variant textures, the geometric features can provide adaptive estimation results in the case of the degeneration of visual features. Experiments on the KITTI driving dataset reveal that our scheme achieves promising results in the estimation of camera pose and depth. Moreover, the absolute scale recovery for the global camera trajectory is effective.","PeriodicalId":37058,"journal":{"name":"Cyber-Physical Systems","volume":"14 1","pages":"133 - 158"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335777.2020.1811386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT In this paper, we propose an unsupervised learning method for jointly estimating monocular depth and ego-motion, which is capable to recover the absolute scale of global camera trajectory. In order to solve the general problems of scale drift and scale ambiguity of monocular camera, we fuse geometric movement data from inertial measurement unit (IMU), and use Bi-directional Long Short-Term Memory (BiLSTM) to extract temporal features. Besides, we add a lightweight and efficient attention mechanism, Convolutional Block Attention Module (CBAM), to Convolutional Neural Networks (CNNs) to complete the extraction of image features. Considering the scenes with severe illumination changes, ambiguous structures, moving objects and occlusions, especially scenes with progressively-variant textures, the geometric features can provide adaptive estimation results in the case of the degeneration of visual features. Experiments on the KITTI driving dataset reveal that our scheme achieves promising results in the estimation of camera pose and depth. Moreover, the absolute scale recovery for the global camera trajectory is effective.
深度和自我运动的无监督学习,从视觉和惯性数据序列中恢复绝对全局尺度
本文提出了一种用于单目深度和自我运动联合估计的无监督学习方法,该方法能够恢复全局摄像机轨迹的绝对尺度。为了解决单目摄像机普遍存在的尺度漂移和尺度模糊问题,我们融合了惯性测量单元(IMU)的几何运动数据,并利用双向长短期记忆(BiLSTM)提取时间特征。此外,我们在卷积神经网络(cnn)中加入了一种轻量级、高效的注意机制——卷积块注意模块(CBAM)来完成图像特征的提取。对于光照剧烈变化、结构模糊、物体移动和遮挡的场景,特别是纹理渐变的场景,几何特征可以在视觉特征退化的情况下提供自适应的估计结果。在KITTI驾驶数据集上的实验表明,我们的方案在相机姿态和深度的估计上取得了很好的效果。此外,对全局相机轨迹的绝对尺度恢复是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cyber-Physical Systems
Cyber-Physical Systems Engineering-Computational Mechanics
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信