Sunasheer Bhattacharjee, Martin Damrath, P. Hoeher
{"title":"Design of macroscopic air-based molecular communication concept using fluorescein","authors":"Sunasheer Bhattacharjee, Martin Damrath, P. Hoeher","doi":"10.1145/3411295.3411303","DOIUrl":null,"url":null,"abstract":"A proof of concept for a macroscopic air-based molecular communication testbed is presented using fluorescein. The compound in solution state when excited by ultra-violet light, acts as information carrier between a sprayer (transmitter) and a camera (receiver). Relatively higher data rates can be achieved compared to traditional air-based testbeds using alcohol. Implemented modulation schemes include on-off keying, pulse position modulation and differential pulse position modulation, which showcase the efficacy of the system in terms of achievable data transmission rates.","PeriodicalId":93611,"journal":{"name":"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411295.3411303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A proof of concept for a macroscopic air-based molecular communication testbed is presented using fluorescein. The compound in solution state when excited by ultra-violet light, acts as information carrier between a sprayer (transmitter) and a camera (receiver). Relatively higher data rates can be achieved compared to traditional air-based testbeds using alcohol. Implemented modulation schemes include on-off keying, pulse position modulation and differential pulse position modulation, which showcase the efficacy of the system in terms of achievable data transmission rates.