Continuity of the time constant in a continuous model of first passage percolation

IF 1.5 Q2 PHYSICS, MATHEMATICAL
J.-B. Gouéré, Marie Théret
{"title":"Continuity of the time constant in a continuous model of first passage percolation","authors":"J.-B. Gouéré, Marie Théret","doi":"10.1214/21-aihp1222","DOIUrl":null,"url":null,"abstract":"For a given dimension d $\\ge$ 2 and a finite measure $\\nu$ on (0, +$\\infty$), we consider $\\xi$ a Poisson point process on R d x (0, +$\\infty$) with intensity measure dc $\\otimes$ $\\nu$ where dc denotes the Lebesgue measure on R d. We consider the Boolean model $\\Sigma$ = $\\cup$ (c,r)$\\in$$\\xi$ B(c, r) where B(c, r) denotes the open ball centered at c with radius r. For every x, y $\\in$ R d we define T (x, y) as the minimum time needed to travel from x to y by a traveler that walks at speed 1 outside $\\Sigma$ and at infinite speed inside $\\Sigma$. By a standard application of Kingman sub-additive theorem, one easily shows that T (0, x) behaves like $\\mu$ x when x goes to infinity, where $\\mu$ is a constant named the time constant in classical first passage percolation. In this paper we investigate the regularity of $\\mu$ as a function of the measure $\\nu$ associated with the underlying Boolean model.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aihp1222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

For a given dimension d $\ge$ 2 and a finite measure $\nu$ on (0, +$\infty$), we consider $\xi$ a Poisson point process on R d x (0, +$\infty$) with intensity measure dc $\otimes$ $\nu$ where dc denotes the Lebesgue measure on R d. We consider the Boolean model $\Sigma$ = $\cup$ (c,r)$\in$$\xi$ B(c, r) where B(c, r) denotes the open ball centered at c with radius r. For every x, y $\in$ R d we define T (x, y) as the minimum time needed to travel from x to y by a traveler that walks at speed 1 outside $\Sigma$ and at infinite speed inside $\Sigma$. By a standard application of Kingman sub-additive theorem, one easily shows that T (0, x) behaves like $\mu$ x when x goes to infinity, where $\mu$ is a constant named the time constant in classical first passage percolation. In this paper we investigate the regularity of $\mu$ as a function of the measure $\nu$ associated with the underlying Boolean model.
第一通道渗流连续模型中时间常数的连续性
对于给定的维数d $\ge$ 2和一个有限的测量 $\nu$ 在(0,+$\infty$),我们认为 $\xi$ 在rdx(0, +)上的泊松点过程$\infty$),强度测量直流 $\otimes$ $\nu$ 其中dc表示R d上的勒贝格测度。我们考虑布尔模型 $\Sigma$ = $\cup$ (c,r)$\in$$\xi$ B(c, r)其中B(c, r)表示以c为圆心半径为r的开放球 $\in$ 我们定义T (x, y)为一个在外面以速度1行走的旅行者从x到y所需要的最小时间 $\Sigma$ 在里面以无限的速度 $\Sigma$. 通过对Kingman次加性定理的标准应用,可以很容易地证明T (0, x)表现为 $\mu$ 当X→∞时 $\mu$ 是经典第一通道渗流中的一个常数,称为时间常数。的正则性 $\mu$ 作为度量的函数 $\nu$ 与底层布尔模型相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信