Towards Mobile Query Auto-Completion: An Efficient Mobile Application-Aware Approach

Aston Zhang, Amit Goyal, R. Baeza-Yates, Yi Chang, Jiawei Han, Carl A. Gunter, Hongbo Deng
{"title":"Towards Mobile Query Auto-Completion: An Efficient Mobile Application-Aware Approach","authors":"Aston Zhang, Amit Goyal, R. Baeza-Yates, Yi Chang, Jiawei Han, Carl A. Gunter, Hongbo Deng","doi":"10.1145/2872427.2882977","DOIUrl":null,"url":null,"abstract":"We study the new mobile query auto-completion (QAC) problem to exploit mobile devices' exclusive signals, such as those related to mobile applications (apps). We propose AppAware, a novel QAC model using installed app and recently opened app signals to suggest queries for matching input prefixes on mobile devices. To overcome the challenge of noisy and voluminous signals, AppAware optimizes composite objectives with a lighter processing cost at a linear rate of convergence. We conduct experiments on a large commercial data set of mobile queries and apps. Installed app and recently opened app signals consistently and significantly boost the accuracy of various baseline QAC models on mobile devices.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2872427.2882977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We study the new mobile query auto-completion (QAC) problem to exploit mobile devices' exclusive signals, such as those related to mobile applications (apps). We propose AppAware, a novel QAC model using installed app and recently opened app signals to suggest queries for matching input prefixes on mobile devices. To overcome the challenge of noisy and voluminous signals, AppAware optimizes composite objectives with a lighter processing cost at a linear rate of convergence. We conduct experiments on a large commercial data set of mobile queries and apps. Installed app and recently opened app signals consistently and significantly boost the accuracy of various baseline QAC models on mobile devices.
面向移动查询自动完成:一种高效的移动应用感知方法
我们研究了新的移动查询自动完成(QAC)问题,以利用移动设备的排他性信号,例如与移动应用程序(app)相关的信号。我们提出了AppAware,这是一个新颖的QAC模型,使用已安装的应用程序和最近打开的应用程序信号来建议在移动设备上匹配输入前缀的查询。为了克服噪声和海量信号的挑战,AppAware以线性收敛速度优化了复合目标,降低了处理成本。我们在移动查询和应用程序的大型商业数据集上进行实验。安装的应用程序和最近打开的应用程序信号一致并显著提高了移动设备上各种基线QAC模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信