Emergence of functional information from multivariate correlations

C. Adami, Nitash C G
{"title":"Emergence of functional information from multivariate correlations","authors":"C. Adami, Nitash C G","doi":"10.1098/rsta.2021.0250","DOIUrl":null,"url":null,"abstract":"The information content of symbolic sequences (such as nucleic or amino acid sequences, but also neuronal firings or strings of letters) can be calculated from an ensemble of such sequences, but because information cannot be assigned to single sequences, we cannot correlate information to other observables attached to the sequence. Here we show that an information score obtained from multivariate (multiple-variable) correlations within sequences of a ‘training’ ensemble can be used to predict observables of out-of-sample sequences with an accuracy that scales with the complexity of correlations, showing that functional information emerges from a hierarchy of multi-variable correlations. This article is part of the theme issue ‘Emergent phenomena in complex physical and socio-technical systems: from cells to societies’.","PeriodicalId":20020,"journal":{"name":"Philosophical Transactions of the Royal Society A","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The information content of symbolic sequences (such as nucleic or amino acid sequences, but also neuronal firings or strings of letters) can be calculated from an ensemble of such sequences, but because information cannot be assigned to single sequences, we cannot correlate information to other observables attached to the sequence. Here we show that an information score obtained from multivariate (multiple-variable) correlations within sequences of a ‘training’ ensemble can be used to predict observables of out-of-sample sequences with an accuracy that scales with the complexity of correlations, showing that functional information emerges from a hierarchy of multi-variable correlations. This article is part of the theme issue ‘Emergent phenomena in complex physical and socio-technical systems: from cells to societies’.
从多变量关联中出现功能信息
符号序列(如核酸或氨基酸序列,以及神经元放电或字母串)的信息内容可以从这些序列的集合中计算出来,但由于信息不能分配给单个序列,因此我们不能将信息与附加在序列上的其他可观察值相关联。在这里,我们展示了从“训练”集合序列中的多变量(多变量)相关性中获得的信息得分,可用于预测样本外序列的可观测值,其精度随相关性的复杂性而缩放,表明功能信息来自多变量相关性的层次结构。本文是主题“复杂物理和社会技术系统中的涌现现象:从细胞到社会”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信