Local and global comparisons of the Airy difference profile to Brownian local time

IF 1.5 Q2 PHYSICS, MATHEMATICAL
S. Ganguly, Milind Hegde
{"title":"Local and global comparisons of the Airy difference profile to Brownian local time","authors":"S. Ganguly, Milind Hegde","doi":"10.1214/22-aihp1290","DOIUrl":null,"url":null,"abstract":"There has recently been much activity within the Kardar-Parisi-Zhang universality class spurred by the construction of the canonical limiting object, the parabolic Airy sheet $\\mathcal{S}:\\mathbb{R}^2\\to\\mathbb{R}$ [arXiv:1812.00309]. The parabolic Airy sheet provides a coupling of parabolic Airy$_2$ processes -- a universal limiting geodesic weight profile in planar last passage percolation models -- and a natural goal is to understand this coupling. Geodesic geometry suggests that the difference of two parabolic Airy$_2$ processes, i.e., a difference profile, encodes important structural information. This difference profile $\\mathcal{D}$, given by $\\mathbb{R}\\to\\mathbb{R}:x\\mapsto \\mathcal{S}(1,x)- \\mathcal{S}(-1,x)$, was first studied by Basu, Ganguly, and Hammond [arXiv:1904.01717], who showed that it is monotone and almost everywhere constant, with its points of non-constancy forming a set of Hausdorff dimension $1/2$. Noticing that this is also the Hausdorff dimension of the zero set of Brownian motion leads to the question: is there a connection between $\\mathcal{D}$ and Brownian local time? Establishing that there is indeed a connection, we prove two results. On a global scale, we show that $\\mathcal{D}$ can be written as a Brownian local time patchwork quilt, i.e., as a concatenation of random restrictions of functions which are each absolutely continuous to Brownian local time (of rate four) away from the origin. On a local scale, we explicitly obtain Brownian local time of rate four as a local limit of $\\mathcal{D}$ at a point of increase, picked by a number of methods, including at a typical point sampled according to the distribution function $\\mathcal{D}$. Our arguments rely on the representation of $\\mathcal{S}$ in terms of a last passage problem through the parabolic Airy line ensemble and an understanding of geodesic geometry at deterministic and random times.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aihp1290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 11

Abstract

There has recently been much activity within the Kardar-Parisi-Zhang universality class spurred by the construction of the canonical limiting object, the parabolic Airy sheet $\mathcal{S}:\mathbb{R}^2\to\mathbb{R}$ [arXiv:1812.00309]. The parabolic Airy sheet provides a coupling of parabolic Airy$_2$ processes -- a universal limiting geodesic weight profile in planar last passage percolation models -- and a natural goal is to understand this coupling. Geodesic geometry suggests that the difference of two parabolic Airy$_2$ processes, i.e., a difference profile, encodes important structural information. This difference profile $\mathcal{D}$, given by $\mathbb{R}\to\mathbb{R}:x\mapsto \mathcal{S}(1,x)- \mathcal{S}(-1,x)$, was first studied by Basu, Ganguly, and Hammond [arXiv:1904.01717], who showed that it is monotone and almost everywhere constant, with its points of non-constancy forming a set of Hausdorff dimension $1/2$. Noticing that this is also the Hausdorff dimension of the zero set of Brownian motion leads to the question: is there a connection between $\mathcal{D}$ and Brownian local time? Establishing that there is indeed a connection, we prove two results. On a global scale, we show that $\mathcal{D}$ can be written as a Brownian local time patchwork quilt, i.e., as a concatenation of random restrictions of functions which are each absolutely continuous to Brownian local time (of rate four) away from the origin. On a local scale, we explicitly obtain Brownian local time of rate four as a local limit of $\mathcal{D}$ at a point of increase, picked by a number of methods, including at a typical point sampled according to the distribution function $\mathcal{D}$. Our arguments rely on the representation of $\mathcal{S}$ in terms of a last passage problem through the parabolic Airy line ensemble and an understanding of geodesic geometry at deterministic and random times.
艾里差剖面与布朗地方时的地方和全球比较
最近在kardar - paris - zhang普世性类中有许多活动是由正则极限对象,抛物型Airy表$\mathcal{S}:\mathbb{R}^2\到\mathbb{R}$的构造引起的[arXiv:1812.00309]。抛物线Airy薄片提供了抛物线Airy$_2$过程的耦合——平面最后通道渗流模型中的通用极限测地线重量剖面——理解这种耦合是一个自然的目标。测地线几何表明,两个抛物线Airy$_2$过程的差异,即一个差异轮廓,编码了重要的结构信息。这个由$\mathbb{R}\到$ mathbb{R}:x\映射到$ mathcal{S}(1,x)- $ mathcal{S}(-1,x)$的差分曲线$\mathcal{D}$首先由Basu, Ganguly和Hammond [arXiv:1904.01717]研究,他们证明了它是单调的,并且几乎处处都是常数,其非常数点形成一个Hausdorff维数$1/2$的集合。注意到这也是布朗运动零集的豪斯多夫维数,这就引出了一个问题:$\mathcal{D}$和布朗本地时间之间是否存在联系?为了确定两者之间确实存在联系,我们证明了两个结果。在全局尺度上,我们证明$\mathcal{D}$可以写成一个布朗局部时间的拼接被子,即,作为一个随机限制函数的串联,这些函数每个都绝对连续于远离原点的布朗局部时间(速率为4)。在局部尺度上,我们显式地得到了速率为4的布朗局部时间作为$\mathcal{D}$在一个增量点上的局部极限,这个增量点由许多方法选择,包括在一个根据分布函数$\mathcal{D}$采样的典型点。我们的论点依赖于$\mathcal{S}$的表示,通过抛物线艾里线集合的最后通道问题和对确定性和随机时间测地线几何的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信