{"title":"Local Poisson groupoids over mixed product Poisson structures and generalised double Bruhat cells","authors":"Victor Mouquin","doi":"10.4310/jsg.2021.v19.n4.a4","DOIUrl":null,"url":null,"abstract":"Given a standard complex semisimple Poisson Lie group $(G, \\pi_{st})$, generalised double Bruhat cells $G^{u, v}$ and generalised Bruhat cells $O^u$ equipped with naturally defined holomorphic Poisson structures, where u, v are finite sequences of Weyl group elements, were defined and studied by Jiang Hua Lu and the author. We prove in this paper that $G^{u,u}$ is naturally a Poisson groupoid over $O^u$, extending a result from the aforementioned authors about double Bruhat cells in $(G, \\pi_{st})$. Our result on $G^{u,u}$ is obtained as an application of a construction interesting in its own right, of a local Poisson groupoid over a mixed product Poisson structure associated to the action of a pair of Lie bialgebras. This construction involves using a local Lagrangian bisection in a double symplectic groupoid closely related to the global R-matrix studied by Weinstein and Xu, to twist a direct product of Poisson groupoids.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2021.v19.n4.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Given a standard complex semisimple Poisson Lie group $(G, \pi_{st})$, generalised double Bruhat cells $G^{u, v}$ and generalised Bruhat cells $O^u$ equipped with naturally defined holomorphic Poisson structures, where u, v are finite sequences of Weyl group elements, were defined and studied by Jiang Hua Lu and the author. We prove in this paper that $G^{u,u}$ is naturally a Poisson groupoid over $O^u$, extending a result from the aforementioned authors about double Bruhat cells in $(G, \pi_{st})$. Our result on $G^{u,u}$ is obtained as an application of a construction interesting in its own right, of a local Poisson groupoid over a mixed product Poisson structure associated to the action of a pair of Lie bialgebras. This construction involves using a local Lagrangian bisection in a double symplectic groupoid closely related to the global R-matrix studied by Weinstein and Xu, to twist a direct product of Poisson groupoids.