{"title":"Simulation on the Interfacial Singular Stress-strain Induced Cracking of Microelectronic Chip Under pPower On-off Cycles","authors":"Xiaoguang Huang","doi":"10.33180/infmidem2019.203","DOIUrl":null,"url":null,"abstract":"Thermal fatigue failure of a microelectronic chip usually initiates from the interface between solder joint and substrate for the mismatch in coefficient of thermal expansion (CTE). Because of the viscoelastic creep properties of the solder, the interfacial stress-strain are, strongly, temperature and time dependent. Based on the established constitutive models of solder materials, the three-dimensional FEM analysis of the microelectronic chip undergoing power on-off thermal cycles is carried out. The time dependent stress-strain singular fields at the solder/substance interface are obtained, and the singular field parameters are quantitatively evaluated. Furthermore, the crack nucleation behavior of thermal fatigue failure are tested to verify the conclusion that singular stress-strain promote thermal fatigue failure from the solder/substance interface.","PeriodicalId":56293,"journal":{"name":"Informacije Midem-Journal of Microelectronics Electronic Components and Materials","volume":"11 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacije Midem-Journal of Microelectronics Electronic Components and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33180/infmidem2019.203","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
Thermal fatigue failure of a microelectronic chip usually initiates from the interface between solder joint and substrate for the mismatch in coefficient of thermal expansion (CTE). Because of the viscoelastic creep properties of the solder, the interfacial stress-strain are, strongly, temperature and time dependent. Based on the established constitutive models of solder materials, the three-dimensional FEM analysis of the microelectronic chip undergoing power on-off thermal cycles is carried out. The time dependent stress-strain singular fields at the solder/substance interface are obtained, and the singular field parameters are quantitatively evaluated. Furthermore, the crack nucleation behavior of thermal fatigue failure are tested to verify the conclusion that singular stress-strain promote thermal fatigue failure from the solder/substance interface.
期刊介绍:
Informacije MIDEM publishes original research papers in the fields of microelectronics, electronic components and materials. Review papers are published upon invitation only. Scientific novelty and potential interest for a wider spectrum of readers is desired. Authors are encouraged to provide as much detail as possible for others to be able to replicate their results. Therefore, there is no page limit, provided that the text is concise and comprehensive, and any data that does not fit within a classical manuscript can be added as supplementary material.
Topics of interest include:
Microelectronics,
Semiconductor devices,
Nanotechnology,
Electronic circuits and devices,
Electronic sensors and actuators,
Microelectromechanical systems (MEMS),
Medical electronics,
Bioelectronics,
Power electronics,
Embedded system electronics,
System control electronics,
Signal processing,
Microwave and millimetre-wave techniques,
Wireless and optical communications,
Antenna technology,
Optoelectronics,
Photovoltaics,
Ceramic materials for electronic devices,
Thick and thin film materials for electronic devices.