Optimum probability model selection using Akaike's information criterion for low power applications

R. Chandramouli, V. Srikantam
{"title":"Optimum probability model selection using Akaike's information criterion for low power applications","authors":"R. Chandramouli, V. Srikantam","doi":"10.1109/ISCAS.2000.857132","DOIUrl":null,"url":null,"abstract":"Optimal probability model selection for power estimation in low power VLSI applications is studied. Akaike's information criterion is used to estimate the optimal number of components in a mixture density model for the simulated power data. Theory behind the proposed algorithm is discussed followed by experimental results for ISCAS '85 benchmark circuits and a large industrial circuit. The method is shown to perform well for both large and small circuits even when the number of observed samples is small. The algorithm is promising as a pre-processing step to automatically compute the optimal probability model before any other power estimation procedure is applied. We also note that the method is applicable to other problems in VLSI for model selection.","PeriodicalId":6422,"journal":{"name":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","volume":"1 1","pages":"467-470 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2000.857132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Optimal probability model selection for power estimation in low power VLSI applications is studied. Akaike's information criterion is used to estimate the optimal number of components in a mixture density model for the simulated power data. Theory behind the proposed algorithm is discussed followed by experimental results for ISCAS '85 benchmark circuits and a large industrial circuit. The method is shown to perform well for both large and small circuits even when the number of observed samples is small. The algorithm is promising as a pre-processing step to automatically compute the optimal probability model before any other power estimation procedure is applied. We also note that the method is applicable to other problems in VLSI for model selection.
基于赤池信息准则的低功耗应用最优概率模型选择
研究了低功耗VLSI应用中功率估计的最优概率模型选择。利用赤池信息准则对模拟功率数据估计混合密度模型的最优分量数。讨论了该算法的理论基础,并给出了ISCAS’85基准电路和大型工业电路的实验结果。结果表明,该方法对大型和小型电路都有良好的性能,即使观察到的样本数量很少。该算法有望作为预处理步骤,在应用任何其他功率估计程序之前自动计算出最优概率模型。我们还注意到该方法适用于超大规模集成电路中的其他模型选择问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信