{"title":"The Minimum Distance of the [83, 42] Ternary Quadratic Residue Code","authors":"Doug Kuhlman","doi":"10.1109/18.746814","DOIUrl":null,"url":null,"abstract":"We find the minimum distance of the nonextended [83,42] ternary quadratic residue code to be 20.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"13 1","pages":"282"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/18.746814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We find the minimum distance of the nonextended [83,42] ternary quadratic residue code to be 20.