Customized reviews for small user-databases using iterative SVD and content based filtering

Jonathan Gregg, Nitin Jain
{"title":"Customized reviews for small user-databases using iterative SVD and content based filtering","authors":"Jonathan Gregg, Nitin Jain","doi":"10.1145/2501025.2501036","DOIUrl":null,"url":null,"abstract":"Recommender systems have proven to be a valuable tool for web companies like Amazon and Netflix for attracting and maintaining a large user base. However, in situations when user data is more scarce (e.g., for mid-sized companies, or an online retailer testing a new ratings system) algorithms tailored to smaller datasets can be used to further increase accuracy. This paper explores the potential of combining collaborative and content-based (using user comments) filtering algorithms using Yelp.com data from a single city. We present the method to combine two approaches, and find that the MSE for predicting a user's new rating can be reduced from a baseline MSE of 1.744 to 0.934 given just 2500 rated items in our real-world dataset.","PeriodicalId":74521,"journal":{"name":"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining","volume":"12 1","pages":"14:1-14:5"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2501025.2501036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recommender systems have proven to be a valuable tool for web companies like Amazon and Netflix for attracting and maintaining a large user base. However, in situations when user data is more scarce (e.g., for mid-sized companies, or an online retailer testing a new ratings system) algorithms tailored to smaller datasets can be used to further increase accuracy. This paper explores the potential of combining collaborative and content-based (using user comments) filtering algorithms using Yelp.com data from a single city. We present the method to combine two approaches, and find that the MSE for predicting a user's new rating can be reduced from a baseline MSE of 1.744 to 0.934 given just 2500 rated items in our real-world dataset.
使用迭代SVD和基于内容的过滤为小型用户数据库定制评论
对于像亚马逊和Netflix这样的网络公司来说,推荐系统已经被证明是一个很有价值的工具,可以吸引和维持庞大的用户群。然而,在用户数据更稀缺的情况下(例如,对于中型公司或在线零售商测试新的评级系统),可以使用针对较小数据集的算法来进一步提高准确性。本文利用单个城市的Yelp.com数据,探索了将协作和基于内容(使用用户评论)的过滤算法相结合的潜力。我们提出了结合两种方法的方法,并发现预测用户新评级的MSE可以从1.744的基线MSE降低到0.934,给定我们的真实数据集中只有2500个评级项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信