DeepHand: Robust Hand Pose Estimation by Completing a Matrix Imputed with Deep Features

Ayan Sinha, Chiho Choi, K. Ramani
{"title":"DeepHand: Robust Hand Pose Estimation by Completing a Matrix Imputed with Deep Features","authors":"Ayan Sinha, Chiho Choi, K. Ramani","doi":"10.1109/CVPR.2016.450","DOIUrl":null,"url":null,"abstract":"We propose DeepHand to estimate the 3D pose of a hand using depth data from commercial 3D sensors. We discriminatively train convolutional neural networks to output a low dimensional activation feature given a depth map. This activation feature vector is representative of the global or local joint angle parameters of a hand pose. We efficiently identify 'spatial' nearest neighbors to the activation feature, from a database of features corresponding to synthetic depth maps, and store some 'temporal' neighbors from previous frames. Our matrix completion algorithm uses these 'spatio-temporal' activation features and the corresponding known pose parameter values to estimate the unknown pose parameters of the input feature vector. Our database of activation features supplements large viewpoint coverage and our hierarchical estimation of pose parameters is robust to occlusions. We show that our approach compares favorably to state-of-the-art methods while achieving real time performance (≈ 32 FPS) on a standard computer.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"30 1","pages":"4150-4158"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"151","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 151

Abstract

We propose DeepHand to estimate the 3D pose of a hand using depth data from commercial 3D sensors. We discriminatively train convolutional neural networks to output a low dimensional activation feature given a depth map. This activation feature vector is representative of the global or local joint angle parameters of a hand pose. We efficiently identify 'spatial' nearest neighbors to the activation feature, from a database of features corresponding to synthetic depth maps, and store some 'temporal' neighbors from previous frames. Our matrix completion algorithm uses these 'spatio-temporal' activation features and the corresponding known pose parameter values to estimate the unknown pose parameters of the input feature vector. Our database of activation features supplements large viewpoint coverage and our hierarchical estimation of pose parameters is robust to occlusions. We show that our approach compares favorably to state-of-the-art methods while achieving real time performance (≈ 32 FPS) on a standard computer.
DeepHand:基于深度特征完成矩阵的鲁棒手部姿态估计
我们提出DeepHand使用商用3D传感器的深度数据来估计手的3D姿势。我们判别训练卷积神经网络输出给定深度图的低维激活特征。该激活特征向量代表了手部姿态的全局或局部关节角度参数。我们从与合成深度图相对应的特征数据库中有效地识别出激活特征的“空间”近邻,并存储来自前一帧的一些“时间”近邻。我们的矩阵补全算法使用这些“时空”激活特征和相应的已知姿态参数值来估计输入特征向量的未知姿态参数。我们的激活特征数据库补充了大的视点覆盖率,我们的姿态参数分层估计对遮挡具有鲁棒性。我们表明,在标准计算机上实现实时性能(≈32 FPS)的同时,我们的方法与最先进的方法相比具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信