Convergence rate of primal dual reciprocal Barrier Newton interior-point methods

IF 1.4 3区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
A. El-Bakry
{"title":"Convergence rate of primal dual reciprocal Barrier Newton interior-point methods","authors":"A. El-Bakry","doi":"10.1080/10556789808805685","DOIUrl":null,"url":null,"abstract":"Primal-dual interior-point methods for linear programming are often motivated by a certaijn nonlinear transformation of the Karush-Kuhn-Tucker conditions of the logarithmic Barrier formulation. Recently, Nassar [5] studied the reciprocal Barrier function formulation of the problem. Using a similar nonlinear transformation, he proved local convergence fir Newton interior-point method on the resulting perturbed Karush-Kuhn-Tucker systerp. This result poses the question whether this method can exhibit fast convergence ral[e for linear programming. In this paper we prove that, for linear programming, Newton's method on the reciprocal Barrier formulation exhibits at best Q-linear convergence rattf. Moreover, an exact Q1 factor is established which precludes fast linear convergence","PeriodicalId":54673,"journal":{"name":"Optimization Methods & Software","volume":"11 1","pages":"37-44"},"PeriodicalIF":1.4000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods & Software","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10556789808805685","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Primal-dual interior-point methods for linear programming are often motivated by a certaijn nonlinear transformation of the Karush-Kuhn-Tucker conditions of the logarithmic Barrier formulation. Recently, Nassar [5] studied the reciprocal Barrier function formulation of the problem. Using a similar nonlinear transformation, he proved local convergence fir Newton interior-point method on the resulting perturbed Karush-Kuhn-Tucker systerp. This result poses the question whether this method can exhibit fast convergence ral[e for linear programming. In this paper we prove that, for linear programming, Newton's method on the reciprocal Barrier formulation exhibits at best Q-linear convergence rattf. Moreover, an exact Q1 factor is established which precludes fast linear convergence
原始对偶互易势垒牛顿内点法的收敛速度
线性规划的原对偶内点法通常是由对数Barrier公式的Karush-Kuhn-Tucker条件的某种非线性变换所驱动的。最近,Nassar[5]研究了互易势垒函数的表述问题。利用类似的非线性变换,证明了牛顿内点法对扰动Karush-Kuhn-Tucker系统的局部收敛性。这一结果提出了该方法对于线性规划是否具有快速收敛性的问题。本文证明了对于线性规划,牛顿方法在互反Barrier公式上最优表现为q -线性收敛。此外,建立了一个精确的Q1因子,排除了快速线性收敛
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optimization Methods & Software
Optimization Methods & Software 工程技术-计算机:软件工程
CiteScore
4.50
自引率
0.00%
发文量
40
审稿时长
7 months
期刊介绍: Optimization Methods and Software publishes refereed papers on the latest developments in the theory and realization of optimization methods, with particular emphasis on the interface between software development and algorithm design. Topics include: Theory, implementation and performance evaluation of algorithms and computer codes for linear, nonlinear, discrete, stochastic optimization and optimal control. This includes in particular conic, semi-definite, mixed integer, network, non-smooth, multi-objective and global optimization by deterministic or nondeterministic algorithms. Algorithms and software for complementarity, variational inequalities and equilibrium problems, and also for solving inverse problems, systems of nonlinear equations and the numerical study of parameter dependent operators. Various aspects of efficient and user-friendly implementations: e.g. automatic differentiation, massively parallel optimization, distributed computing, on-line algorithms, error sensitivity and validity analysis, problem scaling, stopping criteria and symbolic numeric interfaces. Theoretical studies with clear potential for applications and successful applications of specially adapted optimization methods and software to fields like engineering, machine learning, data mining, economics, finance, biology, or medicine. These submissions should not consist solely of the straightforward use of standard optimization techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信