{"title":"Convergence rate of primal dual reciprocal Barrier Newton interior-point methods","authors":"A. El-Bakry","doi":"10.1080/10556789808805685","DOIUrl":null,"url":null,"abstract":"Primal-dual interior-point methods for linear programming are often motivated by a certaijn nonlinear transformation of the Karush-Kuhn-Tucker conditions of the logarithmic Barrier formulation. Recently, Nassar [5] studied the reciprocal Barrier function formulation of the problem. Using a similar nonlinear transformation, he proved local convergence fir Newton interior-point method on the resulting perturbed Karush-Kuhn-Tucker systerp. This result poses the question whether this method can exhibit fast convergence ral[e for linear programming. In this paper we prove that, for linear programming, Newton's method on the reciprocal Barrier formulation exhibits at best Q-linear convergence rattf. Moreover, an exact Q1 factor is established which precludes fast linear convergence","PeriodicalId":54673,"journal":{"name":"Optimization Methods & Software","volume":"11 1","pages":"37-44"},"PeriodicalIF":1.4000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods & Software","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10556789808805685","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Primal-dual interior-point methods for linear programming are often motivated by a certaijn nonlinear transformation of the Karush-Kuhn-Tucker conditions of the logarithmic Barrier formulation. Recently, Nassar [5] studied the reciprocal Barrier function formulation of the problem. Using a similar nonlinear transformation, he proved local convergence fir Newton interior-point method on the resulting perturbed Karush-Kuhn-Tucker systerp. This result poses the question whether this method can exhibit fast convergence ral[e for linear programming. In this paper we prove that, for linear programming, Newton's method on the reciprocal Barrier formulation exhibits at best Q-linear convergence rattf. Moreover, an exact Q1 factor is established which precludes fast linear convergence
期刊介绍:
Optimization Methods and Software
publishes refereed papers on the latest developments in the theory and realization of optimization methods, with particular emphasis on the interface between software development and algorithm design.
Topics include:
Theory, implementation and performance evaluation of algorithms and computer codes for linear, nonlinear, discrete, stochastic optimization and optimal control. This includes in particular conic, semi-definite, mixed integer, network, non-smooth, multi-objective and global optimization by deterministic or nondeterministic algorithms.
Algorithms and software for complementarity, variational inequalities and equilibrium problems, and also for solving inverse problems, systems of nonlinear equations and the numerical study of parameter dependent operators.
Various aspects of efficient and user-friendly implementations: e.g. automatic differentiation, massively parallel optimization, distributed computing, on-line algorithms, error sensitivity and validity analysis, problem scaling, stopping criteria and symbolic numeric interfaces.
Theoretical studies with clear potential for applications and successful applications of specially adapted optimization methods and software to fields like engineering, machine learning, data mining, economics, finance, biology, or medicine. These submissions should not consist solely of the straightforward use of standard optimization techniques.