The Sard problem in step 2 and in filiform Carnot groups                                                    

IF 1.3 3区 数学 Q4 AUTOMATION & CONTROL SYSTEMS
Francesco Boarotto, Luca Nalon, D. Vittone
{"title":"The Sard problem in step 2 and in filiform Carnot groups\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n ","authors":"Francesco Boarotto, Luca Nalon, D. Vittone","doi":"10.1051/cocv/2022074","DOIUrl":null,"url":null,"abstract":"Abstract. We study the Sard problem for the endpoint map in some well-known classes of Carnot groups. Our first main result deals with step 2 Carnot groups, where we provide lower bounds (depending only on the algebra of the group) on the codimension of the abnormal set; it turns out that our bound is always at least 3, which improves the result proved in [12] and settles a question emerged in [15]. In our second main result we characterize the abnormal set in filiform groups and show that it is either a horizontal line, or a 3-dimensional algebraic variety.","PeriodicalId":50500,"journal":{"name":"Esaim-Control Optimisation and Calculus of Variations","volume":"13 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Control Optimisation and Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/cocv/2022074","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract. We study the Sard problem for the endpoint map in some well-known classes of Carnot groups. Our first main result deals with step 2 Carnot groups, where we provide lower bounds (depending only on the algebra of the group) on the codimension of the abnormal set; it turns out that our bound is always at least 3, which improves the result proved in [12] and settles a question emerged in [15]. In our second main result we characterize the abnormal set in filiform groups and show that it is either a horizontal line, or a 3-dimensional algebraic variety.
第二步中的Sard问题和丝状卡诺群
摘要研究了一些著名的卡诺群的端点映射的Sard问题。我们的第一个主要结果处理第2步卡诺群,在这里我们提供了异常集的余维的下界(仅取决于群的代数);我们的界总是至少为3,这改进了[12]中证明的结果,解决了[15]中出现的一个问题。在我们的第二个主要结果中,我们描述了丝状群体中的异常集,并表明它要么是一条水平线,要么是一个三维代数变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Esaim-Control Optimisation and Calculus of Variations
Esaim-Control Optimisation and Calculus of Variations Mathematics-Computational Mathematics
自引率
7.10%
发文量
77
期刊介绍: ESAIM: COCV strives to publish rapidly and efficiently papers and surveys in the areas of Control, Optimisation and Calculus of Variations. Articles may be theoretical, computational, or both, and they will cover contemporary subjects with impact in forefront technology, biosciences, materials science, computer vision, continuum physics, decision sciences and other allied disciplines. Targeted topics include: in control: modeling, controllability, optimal control, stabilization, control design, hybrid control, robustness analysis, numerical and computational methods for control, stochastic or deterministic, continuous or discrete control systems, finite-dimensional or infinite-dimensional control systems, geometric control, quantum control, game theory; in optimisation: mathematical programming, large scale systems, stochastic optimisation, combinatorial optimisation, shape optimisation, convex or nonsmooth optimisation, inverse problems, interior point methods, duality methods, numerical methods, convergence and complexity, global optimisation, optimisation and dynamical systems, optimal transport, machine learning, image or signal analysis; in calculus of variations: variational methods for differential equations and Hamiltonian systems, variational inequalities; semicontinuity and convergence, existence and regularity of minimizers and critical points of functionals, relaxation; geometric problems and the use and development of geometric measure theory tools; problems involving randomness; viscosity solutions; numerical methods; homogenization, multiscale and singular perturbation problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信