Salvador Navarro Carrasco, José Antonio Jiménez-Valera, I. Alhama
{"title":"A Universal Graphical Solution to Calculating Seepage in Excavation of Anisotropic Soils and Non-Limited Scenarios","authors":"Salvador Navarro Carrasco, José Antonio Jiménez-Valera, I. Alhama","doi":"10.3390/geotechnics3030039","DOIUrl":null,"url":null,"abstract":"The interaction between groundwater and civil engineering works is a key aspect in geotechnical design. In the case of excavations confined in sheet pile walls, steel sheeting, diaphragm walls, cut-off walls, or cofferdams, this design requires the estimation, among other soil mechanics properties, of the groundwater flowing into the excavation (seepage) caused by piezometry depletion. Numerical methods, graphical solutions, and analytical procedures are the methodologies traditionally used to solve this issue, solutions of which require an understanding of basic soil mechanical properties, hydraulic conditions and structure geometry. In this work, the discriminated non-dimensionalization technique is applied to obtain, for the first time, the dimensionless groups that govern the seepage, in anisotropic conditions, in large-scale scenarios where groundwater flow is not conditioned by impervious bedrock or the length of the back of the wall: π1=ab,π2=kxb2kyc2 and, π3=T/b. Numerical simulations are carried out to check the validity of dimensionless groups and to develop three sets of type curves that relate to these groups. Once the physical and geometrical data are known, the seepage (Q), the characteristic depth (T*) and the characteristic horizontal extension (L*) can be directly and easily calculated from these abacuses. The influence of anisotropy on the characteristic lengths is also addressed.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"69 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geotechnics3030039","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The interaction between groundwater and civil engineering works is a key aspect in geotechnical design. In the case of excavations confined in sheet pile walls, steel sheeting, diaphragm walls, cut-off walls, or cofferdams, this design requires the estimation, among other soil mechanics properties, of the groundwater flowing into the excavation (seepage) caused by piezometry depletion. Numerical methods, graphical solutions, and analytical procedures are the methodologies traditionally used to solve this issue, solutions of which require an understanding of basic soil mechanical properties, hydraulic conditions and structure geometry. In this work, the discriminated non-dimensionalization technique is applied to obtain, for the first time, the dimensionless groups that govern the seepage, in anisotropic conditions, in large-scale scenarios where groundwater flow is not conditioned by impervious bedrock or the length of the back of the wall: π1=ab,π2=kxb2kyc2 and, π3=T/b. Numerical simulations are carried out to check the validity of dimensionless groups and to develop three sets of type curves that relate to these groups. Once the physical and geometrical data are known, the seepage (Q), the characteristic depth (T*) and the characteristic horizontal extension (L*) can be directly and easily calculated from these abacuses. The influence of anisotropy on the characteristic lengths is also addressed.
期刊介绍:
In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground.
Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering.
The journal''s Editor in Chief is a Member of the Committee on Publication Ethics.
All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories:
geochemistry and geohydrology,
soil and rock physics, biological processes in soil, soil-atmosphere interaction,
electrical, electromagnetic and thermal characteristics of porous media,
waste management, utilization of wastes, multiphase science, landslide wasting,
soil and water conservation,
sensor development and applications,
the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques,
uncertainty, reliability and risk, monitoring and forensic geotechnics.