{"title":"Process convergence of fluctuations of linear eigenvalue statistics of random circulant matrices","authors":"Shambhu Nath Maurya, Koushik Saha","doi":"10.1142/s2010326321500325","DOIUrl":null,"url":null,"abstract":"We discuss the process convergence of the time dependent fluctuations of linear eigenvalue statistics of random circulant matrices with independent Brownian motion entries, as the dimension of the matrix tends to [Formula: see text]. Our derivation is based on the trace formula of circulant matrix, method of moments and some combinatorial techniques.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326321500325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We discuss the process convergence of the time dependent fluctuations of linear eigenvalue statistics of random circulant matrices with independent Brownian motion entries, as the dimension of the matrix tends to [Formula: see text]. Our derivation is based on the trace formula of circulant matrix, method of moments and some combinatorial techniques.