{"title":"On the existence of derivations as square roots of generators of state-symmetric quantum Markov semigroups","authors":"Matthijs Vernooij","doi":"10.1142/s0219025723500030","DOIUrl":null,"url":null,"abstract":"Cipriani and Sauvageot have shown that for any $L^2$-generator $L^{(2)}$ of a tracially symmetric quantum Markov semigroup on a C*-algebra $\\mathcal{A}$ there exists a densely defined derivation $\\delta$ from $\\mathcal{A}$ to a Hilbert bimodule $H$ such that $L^{(2)}=\\delta^*\\circ \\overline{\\delta}$. Here we show that this construction of a derivation can in general not be generalised to quantum Markov semigroups that are symmetric with respect to a non-tracial state. In particular we show that all derivations to Hilbert bimodules can be assumed to have a concrete form, and then we use this form to show that in the finite-dimensional case the existence of such a derivation is equivalent to the existence of a positive matrix solution of a system of linear equations. We solve this system of linear equations for concrete examples using Mathematica to complete the proof.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025723500030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Cipriani and Sauvageot have shown that for any $L^2$-generator $L^{(2)}$ of a tracially symmetric quantum Markov semigroup on a C*-algebra $\mathcal{A}$ there exists a densely defined derivation $\delta$ from $\mathcal{A}$ to a Hilbert bimodule $H$ such that $L^{(2)}=\delta^*\circ \overline{\delta}$. Here we show that this construction of a derivation can in general not be generalised to quantum Markov semigroups that are symmetric with respect to a non-tracial state. In particular we show that all derivations to Hilbert bimodules can be assumed to have a concrete form, and then we use this form to show that in the finite-dimensional case the existence of such a derivation is equivalent to the existence of a positive matrix solution of a system of linear equations. We solve this system of linear equations for concrete examples using Mathematica to complete the proof.