Unit Conflict Resolution for Automatic Math Word Problem Solving

Nuwantha Dewappriya, Gimhani Uthpala Kankanamge, Dushani Wellappili, Asela Hevapathige, Surangika Ranathunga
{"title":"Unit Conflict Resolution for Automatic Math Word Problem Solving","authors":"Nuwantha Dewappriya, Gimhani Uthpala Kankanamge, Dushani Wellappili, Asela Hevapathige, Surangika Ranathunga","doi":"10.1109/MERCON.2018.8421922","DOIUrl":null,"url":null,"abstract":"Among the statistical approaches for math word problem solving, template based approaches have shown to be more robust against a wide spectrum of math word problems, while other approaches target simple arithmetic problems that compose of only one operation or equation. However, even template based systems are poor in performance for questions that contain different units to describe the same measurement. This paper presents a unit conflict resolution system to improve the performance and accuracy of template based systems under minimal supervision. To illustrate the importance of unit conflict resolution for math word problems, we have annotated a new dataset of 385 algebra word problems. We evaluate the performance of our approach both on a benchmark dataset and this new dataset. Experimental results show that integration of our system to an existing automatic math word problem solver outperforms state-of-the-art results when the dataset contains different units to describe the same measurement.","PeriodicalId":6603,"journal":{"name":"2018 Moratuwa Engineering Research Conference (MERCon)","volume":"93 1","pages":"191-196"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Moratuwa Engineering Research Conference (MERCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MERCON.2018.8421922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Among the statistical approaches for math word problem solving, template based approaches have shown to be more robust against a wide spectrum of math word problems, while other approaches target simple arithmetic problems that compose of only one operation or equation. However, even template based systems are poor in performance for questions that contain different units to describe the same measurement. This paper presents a unit conflict resolution system to improve the performance and accuracy of template based systems under minimal supervision. To illustrate the importance of unit conflict resolution for math word problems, we have annotated a new dataset of 385 algebra word problems. We evaluate the performance of our approach both on a benchmark dataset and this new dataset. Experimental results show that integration of our system to an existing automatic math word problem solver outperforms state-of-the-art results when the dataset contains different units to describe the same measurement.
自动数学字题解决的单元冲突解决
在解决数学单词问题的统计方法中,基于模板的方法已被证明对广泛的数学单词问题更健壮,而其他方法则针对仅由一个运算或方程组成的简单算术问题。然而,即使是基于模板的系统,对于包含不同单元来描述相同度量的问题,性能也很差。为了在最小监督下提高基于模板的系统的性能和精度,本文提出了一种单元冲突解决系统。为了说明单元冲突解决对数学字题的重要性,我们注释了一个包含385个代数字题的新数据集。我们在基准数据集和这个新数据集上评估了我们的方法的性能。实验结果表明,当数据集包含不同的单位来描述相同的测量时,我们的系统与现有的自动数学单词问题解决器的集成优于最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信