Organised randoms: Learning and correcting for systematic galaxy clustering patterns in KiDS using self-organising maps

H. Johnston, A. Wright, B. Joachimi, Maciej Bilicki, N. E. Chisari, A. Dvornik, T. Erben, B. Giblin, C. Heymans, H. Hildebrandt, H. Hoekstra, S. Joudaki, M. Vakili
{"title":"Organised randoms: Learning and correcting for systematic galaxy clustering patterns in KiDS using self-organising maps","authors":"H. Johnston, A. Wright, B. Joachimi, Maciej Bilicki, N. E. Chisari, A. Dvornik, T. Erben, B. Giblin, C. Heymans, H. Hildebrandt, H. Hoekstra, S. Joudaki, M. Vakili","doi":"10.1051/0004-6361/202040136","DOIUrl":null,"url":null,"abstract":"We present a new method for the mitigation of observational systematic effects in angular galaxy clustering via corrective random galaxy catalogues. Real and synthetic galaxy data, from the Kilo Degree Survey's (KiDS) 4$^{\\rm{th}}$ Data Release (KiDS-$1000$) and the Full-sky Lognormal Astro-fields Simulation Kit (FLASK) package respectively, are used to train self-organising maps (SOMs) to learn the multivariate relationships between observed galaxy number density and up to six systematic-tracer variables, including seeing, Galactic dust extinction, and Galactic stellar density. We then create `organised' randoms, i.e. random galaxy catalogues with spatially variable number densities, mimicking the learnt systematic density modes in the data. Using realistically biased mock data, we show that these organised randoms consistently subtract spurious density modes from the two-point angular correlation function $w(\\vartheta)$, correcting biases of up to $12\\sigma$ in the mean clustering amplitude to as low as $0.1\\sigma$, over a high signal-to-noise angular range of 7-100 arcmin. Their performance is also validated for angular clustering cross-correlations in a bright, flux-limited subset of KiDS-$1000$, comparing against an analogous sample constructed from highly-complete spectroscopic redshift data. Each organised random catalogue object is a `clone' carrying the properties of a real galaxy, and is distributed throughout the survey footprint according to the parent galaxy's position in systematics-space. Thus, sub-sample randoms are readily derived from a single master random catalogue via the same selection as applied to the real galaxies. Our method is expected to improve in performance with increased survey area, galaxy number density, and systematic contamination, making organised randoms extremely promising for current and future clustering analyses of faint samples.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/0004-6361/202040136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a new method for the mitigation of observational systematic effects in angular galaxy clustering via corrective random galaxy catalogues. Real and synthetic galaxy data, from the Kilo Degree Survey's (KiDS) 4$^{\rm{th}}$ Data Release (KiDS-$1000$) and the Full-sky Lognormal Astro-fields Simulation Kit (FLASK) package respectively, are used to train self-organising maps (SOMs) to learn the multivariate relationships between observed galaxy number density and up to six systematic-tracer variables, including seeing, Galactic dust extinction, and Galactic stellar density. We then create `organised' randoms, i.e. random galaxy catalogues with spatially variable number densities, mimicking the learnt systematic density modes in the data. Using realistically biased mock data, we show that these organised randoms consistently subtract spurious density modes from the two-point angular correlation function $w(\vartheta)$, correcting biases of up to $12\sigma$ in the mean clustering amplitude to as low as $0.1\sigma$, over a high signal-to-noise angular range of 7-100 arcmin. Their performance is also validated for angular clustering cross-correlations in a bright, flux-limited subset of KiDS-$1000$, comparing against an analogous sample constructed from highly-complete spectroscopic redshift data. Each organised random catalogue object is a `clone' carrying the properties of a real galaxy, and is distributed throughout the survey footprint according to the parent galaxy's position in systematics-space. Thus, sub-sample randoms are readily derived from a single master random catalogue via the same selection as applied to the real galaxies. Our method is expected to improve in performance with increased survey area, galaxy number density, and systematic contamination, making organised randoms extremely promising for current and future clustering analyses of faint samples.
有组织的随机:学习和纠正系统的星系团模式在儿童使用自组织地图
本文提出了一种通过校正随机星系表来缓解角星系团观测系统效应的新方法。来自基洛度调查(KiDS) 4$^{\rm{th}}$数据发布(KiDS-$1000$)和全天对数正态天文场模拟工具包(FLASK)包的真实和合成星系数据分别用于训练自组织图(SOMs),以学习观测到的星系数密度与多达六个系统示踪变量之间的多元关系,包括看到,银河系尘埃消失和银河系恒星密度。然后,我们创建“有组织的”随机,即具有空间可变密度的随机星系目录,模仿数据中学习的系统密度模式。使用实际偏倚的模拟数据,我们表明,这些有组织的随机始终从两点角相关函数$w(\vartheta)$中减去杂散密度模式,在7-100 arcmin的高信噪角范围内,将平均聚类振幅中高达$12\sigma$的偏倚校正到低至$0.1\sigma$。与高度完整的光谱红移数据构建的类似样品相比,它们的性能也在明亮,通量有限的KiDS-$1000$子集中验证了角聚类相互关系。每个有组织的随机目录对象都是携带真实星系属性的“克隆”,并根据母星系在系统空间中的位置分布在整个调查足迹中。因此,子样本随机很容易通过应用于真实星系的相同选择从单个主随机目录中得到。我们的方法有望随着调查面积、星系数密度和系统污染的增加而提高性能,使有组织随机对当前和未来微弱样本的聚类分析非常有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信