Study on the Multi-Point Boundary Value Problem for Second-Order Nonlinear Impulsive Integro-Differential Equation

IF 0.7 Q2 MATHEMATICS
Haiyan Li, Yuheng Guo
{"title":"Study on the Multi-Point Boundary Value Problem for Second-Order Nonlinear Impulsive Integro-Differential Equation","authors":"Haiyan Li, Yuheng Guo","doi":"10.1155/2023/3120723","DOIUrl":null,"url":null,"abstract":"In the field of biological control, there are a large number of systems that gradually evolve over a certain period of time. However, due to some natural or human intervention behavior, the system state will be subjected to some relatively short time interference, so that the system state changes in an instant. This sudden change of state makes the system not simply described by continuous or discrete dynamical systems, but by means of impulse dynamical systems. In this paper, the multi-point boundary value problem of a class of second-order nonlinear impulsive integral differential equations is studied on the basis of impulsive differential equation theory. The main results of this kind of equation are obtained by using the fixed point theorem of strict set contraction operator. Under certain assumptions, the existence of the solution of the equation is proved by constructing the operator on the special cone. Finally, combined with the practical application, the theory was applied to the stability prediction of biological ecosystem, and the correctness of the conclusion was verified.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"19 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3120723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of biological control, there are a large number of systems that gradually evolve over a certain period of time. However, due to some natural or human intervention behavior, the system state will be subjected to some relatively short time interference, so that the system state changes in an instant. This sudden change of state makes the system not simply described by continuous or discrete dynamical systems, but by means of impulse dynamical systems. In this paper, the multi-point boundary value problem of a class of second-order nonlinear impulsive integral differential equations is studied on the basis of impulsive differential equation theory. The main results of this kind of equation are obtained by using the fixed point theorem of strict set contraction operator. Under certain assumptions, the existence of the solution of the equation is proved by constructing the operator on the special cone. Finally, combined with the practical application, the theory was applied to the stability prediction of biological ecosystem, and the correctness of the conclusion was verified.
二阶非线性脉冲积分-微分方程多点边值问题的研究
在生物防治领域,有大量的系统是经过一定的时间逐渐进化的。然而,由于某些自然或人为的干预行为,系统状态会受到一些时间相对较短的干扰,从而使系统状态在瞬间发生变化。这种状态的突然变化使得系统不是简单地用连续或离散动力系统来描述,而是用脉冲动力系统来描述。本文基于脉冲微分方程理论,研究了一类二阶非线性脉冲积分微分方程的多点边值问题。利用严格集收缩算子的不动点定理,得到了这类方程的主要结果。在一定的假设条件下,通过构造特殊锥上的算子,证明了方程解的存在性。最后,结合实际应用,将该理论应用于生物生态系统稳定性预测,验证了结论的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信