{"title":"Scene Classification of Remotely Sensed Images using Optimized RSISC-16 Net Deep Convolutional Neural Network Model","authors":"P. Deepan, L. R. Sudha, K. Kalaivani, J. Ganesh","doi":"10.4108/eai.1-2-2022.173292","DOIUrl":null,"url":null,"abstract":"Remote Sensing Image (RSI) analysis has seen a massive increase in popularity over the last few decades, due to the advancement of deep learning models. A wide variety of deep learning models have emerged for the task of scene classification in remote sensing image analysis. The majority of these models have shown significant success. However, we found that there is significant variability, in order to improve the system efficiency in characterizing complex patterns in remote sensing imagery. We achieved this goal by expanding the architecture of VGG-16 Net and fine-tuning hyperparameters such as batch size, dropout probabilities, and activation functions to create the optimized Remote Sensing Image Scene Classification (RSISC-16 Net) deep learning model for scene classification. Using the Talos optimization tool, the results are carried out. This will increase efficiency and reduce the risk of over-fitting. Our proposed RSISC-16 Net model outperforms the VGG-16 Net model, according to experimental results.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.1-2-2022.173292","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Remote Sensing Image (RSI) analysis has seen a massive increase in popularity over the last few decades, due to the advancement of deep learning models. A wide variety of deep learning models have emerged for the task of scene classification in remote sensing image analysis. The majority of these models have shown significant success. However, we found that there is significant variability, in order to improve the system efficiency in characterizing complex patterns in remote sensing imagery. We achieved this goal by expanding the architecture of VGG-16 Net and fine-tuning hyperparameters such as batch size, dropout probabilities, and activation functions to create the optimized Remote Sensing Image Scene Classification (RSISC-16 Net) deep learning model for scene classification. Using the Talos optimization tool, the results are carried out. This will increase efficiency and reduce the risk of over-fitting. Our proposed RSISC-16 Net model outperforms the VGG-16 Net model, according to experimental results.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.