The quantum character of buckling instabilities in thin rods

T. Engstrom
{"title":"The quantum character of buckling instabilities in thin rods","authors":"T. Engstrom","doi":"10.1119/10.0001684","DOIUrl":null,"url":null,"abstract":"Here the buckling of inextensible rods due to axial body forces is mapped to 1d, nonrelativistic, time-independent quantum mechanics. Focusing on the pedagogical case of rods confined to 2d, three simple and physically realizable applications of the mapping are given in detail; the quantum counterparts of these are particle in a box, particle in a delta-function well, and particle in a triangular well. A fourth application examines the buckling counterpart of a quantum many-body problem (in the Hartree approximation). Through a fifth application, given in the form of an exercise, the reader can explore the surprising consequences of adding a second transverse dimension to the rod buckling problem and imposing periodic boundary conditions.","PeriodicalId":8472,"journal":{"name":"arXiv: Soft Condensed Matter","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Soft Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1119/10.0001684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Here the buckling of inextensible rods due to axial body forces is mapped to 1d, nonrelativistic, time-independent quantum mechanics. Focusing on the pedagogical case of rods confined to 2d, three simple and physically realizable applications of the mapping are given in detail; the quantum counterparts of these are particle in a box, particle in a delta-function well, and particle in a triangular well. A fourth application examines the buckling counterpart of a quantum many-body problem (in the Hartree approximation). Through a fifth application, given in the form of an exercise, the reader can explore the surprising consequences of adding a second transverse dimension to the rod buckling problem and imposing periodic boundary conditions.
细棒屈曲不稳定性的量子特性
在这里,不可扩展棒由于轴向体力的屈曲被映射到一维,非相对论,时间无关的量子力学。以二维棒材的教学为例,详细介绍了三种简单的物理上可实现的映射应用;它们的量子对应物是盒子里的粒子,函数井里的粒子,三角形井里的粒子。第四个应用考察了量子多体问题的屈曲对应(在哈特里近似中)。通过以练习形式给出的第五个应用,读者可以探索在杆屈曲问题中增加第二个横向维度并施加周期性边界条件的惊人结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信