{"title":"The quantum character of buckling instabilities in thin rods","authors":"T. Engstrom","doi":"10.1119/10.0001684","DOIUrl":null,"url":null,"abstract":"Here the buckling of inextensible rods due to axial body forces is mapped to 1d, nonrelativistic, time-independent quantum mechanics. Focusing on the pedagogical case of rods confined to 2d, three simple and physically realizable applications of the mapping are given in detail; the quantum counterparts of these are particle in a box, particle in a delta-function well, and particle in a triangular well. A fourth application examines the buckling counterpart of a quantum many-body problem (in the Hartree approximation). Through a fifth application, given in the form of an exercise, the reader can explore the surprising consequences of adding a second transverse dimension to the rod buckling problem and imposing periodic boundary conditions.","PeriodicalId":8472,"journal":{"name":"arXiv: Soft Condensed Matter","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Soft Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1119/10.0001684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Here the buckling of inextensible rods due to axial body forces is mapped to 1d, nonrelativistic, time-independent quantum mechanics. Focusing on the pedagogical case of rods confined to 2d, three simple and physically realizable applications of the mapping are given in detail; the quantum counterparts of these are particle in a box, particle in a delta-function well, and particle in a triangular well. A fourth application examines the buckling counterpart of a quantum many-body problem (in the Hartree approximation). Through a fifth application, given in the form of an exercise, the reader can explore the surprising consequences of adding a second transverse dimension to the rod buckling problem and imposing periodic boundary conditions.