How far can we push flow analysis to identify encrypted anonymity network traffic?

Khalid Shahbar, A. N. Zincir-Heywood
{"title":"How far can we push flow analysis to identify encrypted anonymity network traffic?","authors":"Khalid Shahbar, A. N. Zincir-Heywood","doi":"10.1109/NOMS.2018.8406156","DOIUrl":null,"url":null,"abstract":"Anonymity networks provide privacy to the users by relaying their data to multiple destinations in order to reach the final destination anonymously. Multilayer of encryption is used to protect the users' privacy from attacks or even from the operators of the stations. In this research, we showed how flow analysis could be used to identify encrypted anonymity network traffic under four scenarios: (i) Identifying anonymity networks compared to normal background traffic; (ii) Identifying the type of applications used on the anonymity networks; (iii) Identifying traffic flow behaviors of the anonymity network users; and (iv) Identifying / profiling the users on an anonymity network based on the traffic flow behavior. In order to study these, we employ a machine learning based flow analysis approach and explore how far we can push such an approach.","PeriodicalId":19331,"journal":{"name":"NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOMS.2018.8406156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Anonymity networks provide privacy to the users by relaying their data to multiple destinations in order to reach the final destination anonymously. Multilayer of encryption is used to protect the users' privacy from attacks or even from the operators of the stations. In this research, we showed how flow analysis could be used to identify encrypted anonymity network traffic under four scenarios: (i) Identifying anonymity networks compared to normal background traffic; (ii) Identifying the type of applications used on the anonymity networks; (iii) Identifying traffic flow behaviors of the anonymity network users; and (iv) Identifying / profiling the users on an anonymity network based on the traffic flow behavior. In order to study these, we employ a machine learning based flow analysis approach and explore how far we can push such an approach.
流量分析在识别加密匿名网络流量方面能走多远?
匿名网络通过将用户的数据转发到多个目的地,以匿名方式到达最终目的地,从而为用户提供隐私。多层加密被用来保护用户的隐私不受攻击,甚至不受电台操作员的攻击。在本研究中,我们展示了如何在四种情况下使用流量分析来识别加密匿名网络流量:(i)将匿名网络与正常背景流量进行比较;查明匿名网络上使用的应用程序类型;(iii)识别匿名网络用户的流量行为;(iv)基于流量行为对匿名网络上的用户进行识别/分析。为了研究这些,我们采用了一种基于机器学习的流分析方法,并探索我们可以将这种方法推进多远。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信