Markov triples with two Fibonacci components

F. Luca
{"title":"Markov triples with two Fibonacci components","authors":"F. Luca","doi":"10.4171/rsmup/99","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that there are at most finitely many pairs of Fibonacci numbers (x, y) = (Fm, Fn) with the property that m ≤ n and the pair (m,n) 6∈ {(1, 2r− 1), (1, 2), (2, 2r+ 1), (2r+ 1, 2r+ 3) : r ≥ 1} such that (x, y, z) is a Markov triple for some integer z. Mathematics Subject Classification (2010). Primary: 11B39; Secondary: 11D61.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove that there are at most finitely many pairs of Fibonacci numbers (x, y) = (Fm, Fn) with the property that m ≤ n and the pair (m,n) 6∈ {(1, 2r− 1), (1, 2), (2, 2r+ 1), (2r+ 1, 2r+ 3) : r ≥ 1} such that (x, y, z) is a Markov triple for some integer z. Mathematics Subject Classification (2010). Primary: 11B39; Secondary: 11D61.
具有两个斐波那契分量的马尔可夫三元组
本文证明了具有m≤n的Fibonacci数(x, y) = (Fm, Fn)对,且(m,n) 6∈{(1,2r−1),(1,2),(2,2r + 1), (2r+ 1,2r + 3): r≥1},使得(x, y, z)是某整数z的马尔可夫三重体。数学主题分类(2010)。主:11 b39;二级:11 d61。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信