Graphene based Organic Optical Terahertz Modulator

Bo Zhang, Guo-cui Wang, Hongyu Ji, Bin Li, Jing-ling Shen
{"title":"Graphene based Organic Optical Terahertz Modulator","authors":"Bo Zhang, Guo-cui Wang, Hongyu Ji, Bin Li, Jing-ling Shen","doi":"10.1109/IRMMW-THZ.2018.8510313","DOIUrl":null,"url":null,"abstract":"We investigate a high-efficiency broadband terahertz wave modulator with structures made from the conjugated polymer MEH - PPV, graphene, and Si, irradiated with an external excitation laser. We demonstrate a strategy that can alleviate the tradeoffbetween the requirements of modulation depth and modulation speed in polymer/silicon terahertz wave modulators. Using terahertz time-domain and continuous-wave systems, we measured both the terahertz transmission modulation properties and the time responses of the modulator structures. The conjugated polymer/graphene/silicon structure achieved a high modulation factor of93% for transmission as well as improved the modulation speed of the devices based on polymer/silicon. The high modulation efficiency of the polymer/graphene/silicon structure was induced by the enhancement in carrier density and the extremely high carrier mobility of graphene, respectively.","PeriodicalId":6653,"journal":{"name":"2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"27 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THZ.2018.8510313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate a high-efficiency broadband terahertz wave modulator with structures made from the conjugated polymer MEH - PPV, graphene, and Si, irradiated with an external excitation laser. We demonstrate a strategy that can alleviate the tradeoffbetween the requirements of modulation depth and modulation speed in polymer/silicon terahertz wave modulators. Using terahertz time-domain and continuous-wave systems, we measured both the terahertz transmission modulation properties and the time responses of the modulator structures. The conjugated polymer/graphene/silicon structure achieved a high modulation factor of93% for transmission as well as improved the modulation speed of the devices based on polymer/silicon. The high modulation efficiency of the polymer/graphene/silicon structure was induced by the enhancement in carrier density and the extremely high carrier mobility of graphene, respectively.
基于石墨烯的有机光学太赫兹调制器
我们研究了一种高效的宽带太赫兹波调制器,其结构由共轭聚合物MEH - PPV,石墨烯和Si制成,用外部激发激光照射。我们展示了一种可以缓解聚合物/硅太赫兹波调制器中调制深度和调制速度要求之间权衡的策略。利用太赫兹时域和连续波系统,我们测量了调制器结构的太赫兹传输调制特性和时间响应。共轭聚合物/石墨烯/硅结构实现了93%的高传输调制因子,并提高了基于聚合物/硅的器件的调制速度。聚合物/石墨烯/硅结构的高调制效率分别来自载流子密度的增强和石墨烯极高的载流子迁移率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信