Optimizing data locality using array tiling

W. Ding, Yuanrui Zhang, Jun Liu, M. Kandemir
{"title":"Optimizing data locality using array tiling","authors":"W. Ding, Yuanrui Zhang, Jun Liu, M. Kandemir","doi":"10.1109/ICCAD.2011.6105318","DOIUrl":null,"url":null,"abstract":"Data transformation is one of the key optimizations in maximizing cache locality. Traditional data transformation strategies employ linear data layouts, e.g., row-major or column-major, for multidimensional arrays. Although a linear layout matches the linear memory space well in most cases, it can only optimize for self-spatial locality for individual references. In this work, we propose a novel data layout transformation framework that is able to determine a tiled layout for each array in an application program. Tiled layout can exploit the group-spatial locality among different references and improve cache line utilization. In our strategy, the data elements accessed by different references in one loop iteration are placed into a tile and fetched into the same cache line at runtime. This helps minimizing conflict misses in caches. We evaluated our data layout transformation framework using 30 benchmarks on a commercial multicore machine. The experimental results show that our approach outperforms state-of-the-art data transformation strategies and works well with large core counts.","PeriodicalId":6357,"journal":{"name":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"3 1","pages":"142-149"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2011.6105318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Data transformation is one of the key optimizations in maximizing cache locality. Traditional data transformation strategies employ linear data layouts, e.g., row-major or column-major, for multidimensional arrays. Although a linear layout matches the linear memory space well in most cases, it can only optimize for self-spatial locality for individual references. In this work, we propose a novel data layout transformation framework that is able to determine a tiled layout for each array in an application program. Tiled layout can exploit the group-spatial locality among different references and improve cache line utilization. In our strategy, the data elements accessed by different references in one loop iteration are placed into a tile and fetched into the same cache line at runtime. This helps minimizing conflict misses in caches. We evaluated our data layout transformation framework using 30 benchmarks on a commercial multicore machine. The experimental results show that our approach outperforms state-of-the-art data transformation strategies and works well with large core counts.
使用数组平铺优化数据局部性
数据转换是最大化缓存局部性的关键优化之一。对于多维数组,传统的数据转换策略采用线性数据布局,例如行为主或列为主。尽管线性布局在大多数情况下可以很好地匹配线性内存空间,但它只能优化单个引用的自空间局部性。在这项工作中,我们提出了一种新的数据布局转换框架,它能够确定应用程序中每个数组的平铺布局。平铺布局可以利用不同引用之间的组空间局部性,提高缓存线利用率。在我们的策略中,在一次循环迭代中被不同引用访问的数据元素被放在一个平铺中,并在运行时被提取到相同的缓存行中。这有助于减少缓存中的冲突丢失。我们在商用多核机器上使用30个基准测试来评估我们的数据布局转换框架。实验结果表明,我们的方法优于最先进的数据转换策略,并且可以很好地处理大型核心计数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信