Direct Dual Energy CT Material Decomposition Using Noise2Noise Prior

Wei Fang, Dufan Wu, Kyungsang Kim, Ramandeep Singh, M. Kalra, Liang Li, Quanzheng Li
{"title":"Direct Dual Energy CT Material Decomposition Using Noise2Noise Prior","authors":"Wei Fang, Dufan Wu, Kyungsang Kim, Ramandeep Singh, M. Kalra, Liang Li, Quanzheng Li","doi":"10.1109/NSS/MIC42677.2020.9508021","DOIUrl":null,"url":null,"abstract":"Dual energy computed tomography (DECT) can provide material decomposition capability, which can be useful for many clinical diagnosis applications. But the decomposed images can be very noisy due to the dose limit in the scanning and the ill-condition of decomposition process. Recently Noise2Noise framework shows its potential on restoring images by using only noisy data. Inspired by this, we proposed an iterative DECT reconstruction algorithm with a Noise2Noise prior. The algorithm directly estimates material images from projection data and thus can significantly reduce possible bias which may occur in other post-smoothen methods. The Noise2Noise prior was built by a deep neural network, which did NOT need external data for training. The data fidelity term and the Noise2Noise network are alternatively optimized respectively using separable quadratic surrogate (SQS) and Adam algorithm. The method was validated both on simulation data and real clinical data. Quantitative analysis demonstrates the method's promising performance on denoising, bias avoiding and detail reservation.","PeriodicalId":6760,"journal":{"name":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"22 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS/MIC42677.2020.9508021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dual energy computed tomography (DECT) can provide material decomposition capability, which can be useful for many clinical diagnosis applications. But the decomposed images can be very noisy due to the dose limit in the scanning and the ill-condition of decomposition process. Recently Noise2Noise framework shows its potential on restoring images by using only noisy data. Inspired by this, we proposed an iterative DECT reconstruction algorithm with a Noise2Noise prior. The algorithm directly estimates material images from projection data and thus can significantly reduce possible bias which may occur in other post-smoothen methods. The Noise2Noise prior was built by a deep neural network, which did NOT need external data for training. The data fidelity term and the Noise2Noise network are alternatively optimized respectively using separable quadratic surrogate (SQS) and Adam algorithm. The method was validated both on simulation data and real clinical data. Quantitative analysis demonstrates the method's promising performance on denoising, bias avoiding and detail reservation.
基于Noise2Noise先验的直接双能量CT材料分解
双能量计算机断层扫描(DECT)可以提供物质分解能力,这在许多临床诊断应用中是有用的。但由于扫描时的剂量限制和分解过程的不良条件,分解后的图像会产生很大的噪声。最近Noise2Noise框架显示了它在仅使用噪声数据恢复图像方面的潜力。受此启发,我们提出了一种基于Noise2Noise先验的迭代DECT重构算法。该算法直接从投影数据中估计材料图像,因此可以显著减少其他后平滑方法中可能出现的偏差。Noise2Noise先验是由一个深度神经网络建立的,它不需要外部数据进行训练。数据保真度项和Noise2Noise网络分别使用可分离二次代理(SQS)和Adam算法进行交替优化。仿真数据和实际临床数据验证了该方法的有效性。定量分析表明,该方法在去噪、避免偏置和细节保留等方面具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信