Takahiro Matsumoto, Y. Tanada
求助PDF
{"title":"A real-valued periodic orthogonal sequence derived from a real-valued shift-orthogonal finite-length sequence and its fast periodic correlation algorithm","authors":"Takahiro Matsumoto, Y. Tanada","doi":"10.1002/ECJC.20294","DOIUrl":null,"url":null,"abstract":"This paper proposes a real-valued orthogonal periodic sequence of a period N=2ν derived from a real-valued shift-orthogonal finite-length sequence of length M=2ν+1. This paper also explains the principle of a fast correlation algorithm that efficiently executes periodic correlation processing for this real-valued orthogonal periodic sequence. The sidelobe of an aperiodic autocorrelation function for a real-valued shift-orthogonal finite-length sequence (length of M) is 0 except for the right and left ends of the shift. If the subsequent sequence of first values repeatedly overlap the final values of this sequence, a real-valued orthogonal periodic sequence of a period N=M−1 can be obtained. A real-valued orthogonal periodic sequence of a period N=2ν generated from real-valued shift-orthogonal finite-length sequence of length M=2ν+1 is obtained by convoluting partial sequences and based on that controls the number of multiplications and the number of additions to increment on the order of Nlog2N without using fast Fourier transformation. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(10): 18–28, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20294","PeriodicalId":100407,"journal":{"name":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","volume":"58 1","pages":"18-28"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ECJC.20294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
引用
批量引用
由实值移位正交有限长序列导出的实值周期正交序列及其快速周期相关算法
本文提出了由长度为M=2ν+1的实值位移正交有限长序列导出的周期为N=2ν的实值正交周期序列。本文还解释了一种快速相关算法的原理,该算法能有效地对该实值正交周期序列进行周期相关处理。实值移位正交有限长序列(长度为M)的非周期自相关函数的旁瓣除移位的左右两端外均为0。若后续的首值序列重复重叠于该序列的末值,则可得到周期为N=M−1的实值正交周期序列。由长度为M=2ν+1的实值移位-正交有限长序列通过对部分序列进行卷积得到周期为N=2ν的实值正交周期序列,并在此基础上控制乘法次数和加法次数按Nlog2N的数量级递增,而不使用快速傅里叶变换。©2007 Wiley期刊公司电子工程学报,2009,29 (3):393 - 398;在线发表于Wiley InterScience (www.interscience.wiley.com)。DOI 10.1002 / ecjc.20294
本文章由计算机程序翻译,如有差异,请以英文原文为准。