R. Décio Jr, L. D. Pérez-Fernández, J. Bravo-Castillero
{"title":"Effective Behavior of Nonlinear Microperiodic Composites with Imperfect Contact Via the Asymptotic Homogenization Method.","authors":"R. Décio Jr, L. D. Pérez-Fernández, J. Bravo-Castillero","doi":"10.5540/TCAM.2021.022.01.00079","DOIUrl":null,"url":null,"abstract":"The asymptotic homogenization method is applied here to one-dimensional boundary-value problems for nonlinear differential equations with rapidly oscillating piecewise-constant coefficients which model the behavior of nonlinear microperiodic composites, in order to assess the influence of interfacial imperfect contact on the effective behavior. In particular, a nonlinear power-law flux on the gradient of the unknown was considered. Several calculations were performed and are discussed at the end of this work, including a comparison of some results with variational ounds, which is also an important approach of this work.","PeriodicalId":45147,"journal":{"name":"TeMA-Journal of Land Use Mobility and Environment","volume":"4 1","pages":"79-90"},"PeriodicalIF":1.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TeMA-Journal of Land Use Mobility and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5540/TCAM.2021.022.01.00079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"URBAN STUDIES","Score":null,"Total":0}
引用次数: 1
Abstract
The asymptotic homogenization method is applied here to one-dimensional boundary-value problems for nonlinear differential equations with rapidly oscillating piecewise-constant coefficients which model the behavior of nonlinear microperiodic composites, in order to assess the influence of interfacial imperfect contact on the effective behavior. In particular, a nonlinear power-law flux on the gradient of the unknown was considered. Several calculations were performed and are discussed at the end of this work, including a comparison of some results with variational ounds, which is also an important approach of this work.