{"title":"Trajectory planning of an autonomous mobile robot","authors":"S. Pattanayak, B. B. Choudhury","doi":"10.1504/ijsi.2019.10025726","DOIUrl":null,"url":null,"abstract":"The latest moves in trajectory planning for autonomous mobile robots are directed towards a popular investigation work. This paper introduces modified particle swarm optimisation technique called as adaptive particle swarm optimisation (APSO) and particle swarm optimisation (PSO) for trajectory length optimisation. For estimating the trajectory length of the robot, nine numbers of obstacles is selected between start and goal point in a static environment. Lastly a comparison is established between these two approaches, to identify the approach that affords shortest trajectory length in a least computation time and shortest possible travel time. Simulation result shows that APSO contributes towards curtail trajectory length at a lesser computational and travel time as compared to PSO.","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":"72 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Swarm Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijsi.2019.10025726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The latest moves in trajectory planning for autonomous mobile robots are directed towards a popular investigation work. This paper introduces modified particle swarm optimisation technique called as adaptive particle swarm optimisation (APSO) and particle swarm optimisation (PSO) for trajectory length optimisation. For estimating the trajectory length of the robot, nine numbers of obstacles is selected between start and goal point in a static environment. Lastly a comparison is established between these two approaches, to identify the approach that affords shortest trajectory length in a least computation time and shortest possible travel time. Simulation result shows that APSO contributes towards curtail trajectory length at a lesser computational and travel time as compared to PSO.
期刊介绍:
The mission of the International Journal of Swarm Intelligence Research (IJSIR) is to become a leading international and well-referred journal in swarm intelligence, nature-inspired optimization algorithms, and their applications. This journal publishes original and previously unpublished articles including research papers, survey papers, and application papers, to serve as a platform for facilitating and enhancing the information shared among researchers in swarm intelligence research areas ranging from algorithm developments to real-world applications.