Dynamics and Circuit Implementation of a 4D Memristive Chaotic System with Extreme Multistability

Shaohui Yan, Yu Ren, Binxian Gu, Qiyu Wang, Ertong Wang
{"title":"Dynamics and Circuit Implementation of a 4D Memristive Chaotic System with Extreme Multistability","authors":"Shaohui Yan, Yu Ren, Binxian Gu, Qiyu Wang, Ertong Wang","doi":"10.1142/s0218127423500906","DOIUrl":null,"url":null,"abstract":"In this paper, a four-dimensional chaotic system based on a flux-controlled memristor with cosine function is constructed. It has infinitely many equilibria. By changing the initial values [Formula: see text], [Formula: see text] and [Formula: see text] of the system and keeping the parameters constant, we obtained the distribution of infinitely many single-wing and double-wing attractors along the [Formula: see text]-coordinate, which verifies the initial-offset boosting behavior of the system. Then the complex dynamical behavior of the system is studied in detail through the phase portraits of coexisting attractors, the average value of state variables, Lyapunov exponent spectrum, bifurcation diagram, attraction basin and the complexity of spectral entropy (SE). In addition, the simulation of the Multisim circuit is also carried out, and the results of numerical simulation and analog circuit simulation are consistent. Finally, the chaotic sequence generated by the system is applied to image encryption, and according to the performance analysis, the proposed chaotic system has good security performance.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":"13 1","pages":"2350090:1-2350090:22"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423500906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a four-dimensional chaotic system based on a flux-controlled memristor with cosine function is constructed. It has infinitely many equilibria. By changing the initial values [Formula: see text], [Formula: see text] and [Formula: see text] of the system and keeping the parameters constant, we obtained the distribution of infinitely many single-wing and double-wing attractors along the [Formula: see text]-coordinate, which verifies the initial-offset boosting behavior of the system. Then the complex dynamical behavior of the system is studied in detail through the phase portraits of coexisting attractors, the average value of state variables, Lyapunov exponent spectrum, bifurcation diagram, attraction basin and the complexity of spectral entropy (SE). In addition, the simulation of the Multisim circuit is also carried out, and the results of numerical simulation and analog circuit simulation are consistent. Finally, the chaotic sequence generated by the system is applied to image encryption, and according to the performance analysis, the proposed chaotic system has good security performance.
具有极端多稳定性的4D记忆混沌系统的动力学与电路实现
本文构造了一个基于余弦函数磁控忆阻器的四维混沌系统。它有无穷多个平衡。通过改变系统的初始值[公式:见文]、[公式:见文]和[公式:见文],在保持参数不变的情况下,得到了无限多个单翼和双翼吸引子沿[公式:见文]-坐标的分布,验证了系统的初始偏移升压行为。然后通过共存吸引子的相图、状态变量的平均值、Lyapunov指数谱、分岔图、吸引盆地和谱熵复杂度(SE)详细研究了系统的复杂动力学行为。此外,还对Multisim电路进行了仿真,数值仿真结果与模拟电路仿真结果一致。最后,将系统生成的混沌序列应用于图像加密,性能分析表明,所提出的混沌系统具有良好的安全性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信