{"title":"Interference-aware dual-hop cooperative relaying in a poisson field of interferers","authors":"W. Lu, M. Renzo","doi":"10.1109/GLOCOM.2014.7037457","DOIUrl":null,"url":null,"abstract":"In this paper, we study amplify-and-forward dual-hop cooperative relaying protocols in the presence of Rayleigh fading, additive noise at the relay, as well as additive noise and symmetric alpha-stable interference at the destination. A quasi-static interference scenario is considered, which arises, e.g., when the same interferers are active during broadcast and relaying phases. At the destination, a maximal ratio combining demodulator is developed and studied, by assuming that the aggregate interference can be estimated, i.e., interference-aware design. A closed-form expression of the end-to-end moment generating function is provided and the achievable diversity order is studied. Two main results emerge from the paper: 1) if the ratio of the transmit-powers of cooperative and interfering networks is a constant, the diversity order is equal to 1 and 2) if the transmit-power of the interfering network is a constant, the diversity order is equal to 1 + 1/bI, where bI > 1 is the amplitude path-loss exponent. In the latter case, thus, second-order diversity is achieved asymptotically, as the amplitude path-loss exponent tends to one. Mathematical frameworks and findings are validated with the aid of Monte Carlo simulations.","PeriodicalId":6492,"journal":{"name":"2014 IEEE Global Communications Conference","volume":"69 1","pages":"4143-4149"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2014.7037457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we study amplify-and-forward dual-hop cooperative relaying protocols in the presence of Rayleigh fading, additive noise at the relay, as well as additive noise and symmetric alpha-stable interference at the destination. A quasi-static interference scenario is considered, which arises, e.g., when the same interferers are active during broadcast and relaying phases. At the destination, a maximal ratio combining demodulator is developed and studied, by assuming that the aggregate interference can be estimated, i.e., interference-aware design. A closed-form expression of the end-to-end moment generating function is provided and the achievable diversity order is studied. Two main results emerge from the paper: 1) if the ratio of the transmit-powers of cooperative and interfering networks is a constant, the diversity order is equal to 1 and 2) if the transmit-power of the interfering network is a constant, the diversity order is equal to 1 + 1/bI, where bI > 1 is the amplitude path-loss exponent. In the latter case, thus, second-order diversity is achieved asymptotically, as the amplitude path-loss exponent tends to one. Mathematical frameworks and findings are validated with the aid of Monte Carlo simulations.