Three-dimensional alpha shapes

H. Edelsbrunner, Ernst P. Mücke
{"title":"Three-dimensional alpha shapes","authors":"H. Edelsbrunner, Ernst P. Mücke","doi":"10.1145/147130.147153","DOIUrl":null,"url":null,"abstract":"Frequently, data in scientific computing is in its abstract form a finite point set in space, and it is sometimes useful or required to compute what one might call the “shape” of the set. For that purpose this paper introduces the formal notion of the family of r-x-shapes of a finite point set in IR3. Each shape is a polytope, derived from the Delaunay triangulation of the point set, with a parameter cy E R controlling the desired level of detail. An algorithm is presented that constructs the entire family of shapes for a given set of size n in worst-case time O(n’). A robust implementation of the algorithm is discussed and seveml applications in the area of scientific computing are mentioned.","PeriodicalId":20479,"journal":{"name":"Proceedings of the 1992 workshop on Volume visualization","volume":"PP 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1992-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"817","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1992 workshop on Volume visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/147130.147153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 817

Abstract

Frequently, data in scientific computing is in its abstract form a finite point set in space, and it is sometimes useful or required to compute what one might call the “shape” of the set. For that purpose this paper introduces the formal notion of the family of r-x-shapes of a finite point set in IR3. Each shape is a polytope, derived from the Delaunay triangulation of the point set, with a parameter cy E R controlling the desired level of detail. An algorithm is presented that constructs the entire family of shapes for a given set of size n in worst-case time O(n’). A robust implementation of the algorithm is discussed and seveml applications in the area of scientific computing are mentioned.
三维阿尔法形状
通常,科学计算中的数据是抽象形式的空间中的有限点集,有时计算集合的“形状”是有用的或需要的。为此,本文引入了IR3中有限点集的r-x形族的形式化概念。每个形状都是一个多面体,从点集的Delaunay三角剖分中得到,参数cy E R控制所需的细节水平。提出了一种算法,在最坏情况下,在O(n ')时间内,对给定大小为n的集合,构造出整个形状族。讨论了该算法的鲁棒实现,并提到了该算法在科学计算领域的几个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信