Searching ROI for Object Detection based on CNN

Chia-Lin Wu, Chih-Yang Lin, Phanuvich Hirunsirisombut, Hui-Fuang Ng, T. Shih
{"title":"Searching ROI for Object Detection based on CNN","authors":"Chia-Lin Wu, Chih-Yang Lin, Phanuvich Hirunsirisombut, Hui-Fuang Ng, T. Shih","doi":"10.1109/ISPACS48206.2019.8986381","DOIUrl":null,"url":null,"abstract":"Several studies have explored the structural design of CNN to improve the network's performance since a well-designed feature extractor can benefit convolution-based tasks. Although CNNs are able to learn important patterns on raw images, images may contain unpredictable noise that can negatively influence the convolutional stage. Feature extraction cannot always accurately capture the desired features based solely on the input image, but including extra information could improve the result. This paper proposes a fusion input design to generate an additional feature that a CNN can use to provide extra ROI information. Whether a model can utilize the additional information is a determining factor that affects the performance improvement. The proposed method is tested on two public datasets with different structural designs. Overall, the results indicate that additional ROI information can deliver benefits to specific tasks.","PeriodicalId":6765,"journal":{"name":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"31 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS48206.2019.8986381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Several studies have explored the structural design of CNN to improve the network's performance since a well-designed feature extractor can benefit convolution-based tasks. Although CNNs are able to learn important patterns on raw images, images may contain unpredictable noise that can negatively influence the convolutional stage. Feature extraction cannot always accurately capture the desired features based solely on the input image, but including extra information could improve the result. This paper proposes a fusion input design to generate an additional feature that a CNN can use to provide extra ROI information. Whether a model can utilize the additional information is a determining factor that affects the performance improvement. The proposed method is tested on two public datasets with different structural designs. Overall, the results indicate that additional ROI information can deliver benefits to specific tasks.
基于CNN的目标检测ROI搜索
一些研究已经探索了CNN的结构设计,以提高网络的性能,因为设计良好的特征提取器可以有利于基于卷积的任务。尽管cnn能够在原始图像上学习重要的模式,但图像可能包含不可预测的噪声,这些噪声会对卷积阶段产生负面影响。特征提取不能总是基于输入图像准确地捕获所需的特征,但包含额外的信息可以改善结果。本文提出了一种融合输入设计来生成一个额外的特征,CNN可以使用该特征来提供额外的ROI信息。模型是否可以利用附加信息是影响性能改进的决定性因素。在两个具有不同结构设计的公共数据集上对该方法进行了测试。总的来说,结果表明额外的ROI信息可以为特定的任务带来好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信