Tracking Method of Dynamic Smoke based on U-net

K. Gwak, Young J. Rho
{"title":"Tracking Method of Dynamic Smoke based on U-net","authors":"K. Gwak, Young J. Rho","doi":"10.7236/JIIBC.2021.21.4.81","DOIUrl":null,"url":null,"abstract":"Artificial intelligence technology is developing as it enters the fourth industrial revolution. Active researches are going on; visual-based models using CNNs. U-net is one of the visual-based models. It has shown strong performance for semantic segmentation. Although various U-net studies have been conducted, studies on tracking objects with unclear outlines such as gases and smokes are still insufficient. We conducted a U-net study to tackle this limitation. In this paper, we describe how 3D cameras are used to collect data. The data are organized into learning and test sets. This paper also describes how U-net is applied and how the results is validated.","PeriodicalId":22795,"journal":{"name":"The Journal of the Institute of Webcasting, Internet and Telecommunication","volume":"14 1","pages":"81-87"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of the Institute of Webcasting, Internet and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7236/JIIBC.2021.21.4.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence technology is developing as it enters the fourth industrial revolution. Active researches are going on; visual-based models using CNNs. U-net is one of the visual-based models. It has shown strong performance for semantic segmentation. Although various U-net studies have been conducted, studies on tracking objects with unclear outlines such as gases and smokes are still insufficient. We conducted a U-net study to tackle this limitation. In this paper, we describe how 3D cameras are used to collect data. The data are organized into learning and test sets. This paper also describes how U-net is applied and how the results is validated.
基于U-net的动态烟雾跟踪方法
人工智能技术进入第四次工业革命,正在蓬勃发展。积极的研究正在进行;使用cnn的视觉模型。U-net是一种基于视觉的模型。该方法在语义分割方面表现出较强的性能。虽然进行了各种各样的U-net研究,但对气体和烟雾等轮廓不明确的物体的跟踪研究仍然不足。我们进行了一项U-net研究来解决这个限制。在本文中,我们描述了如何使用3D相机来收集数据。数据被组织成学习集和测试集。本文还描述了U-net是如何应用的,以及如何验证结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信