Content Type Distribution and Readability of MOOCs

M. Carlon, Nopphon Keerativoranan, J. Cross
{"title":"Content Type Distribution and Readability of MOOCs","authors":"M. Carlon, Nopphon Keerativoranan, J. Cross","doi":"10.1145/3386527.3405950","DOIUrl":null,"url":null,"abstract":"Massive open online courses (MOOCs) provide a great opportunity to use multiple means of information representation through a mixture of various media such as text, graphics, and video, among others. However, most research on MOOCs focused on learning analytics and not much attention is given to content analysis. We gathered all text corpora and video transcripts of selected MOOCs using a web crawler and looked at word counts, clustered by distribution, and measured readability of the crawled data. Analyzing content distribution allows for a comparison of MOOCs regardless of topics, thus giving us an idea of what most course developers might think is ideal in terms of content distribution. This comparison along with readability analysis can be useful for course pre-run quality assessment and gauging content sufficiency.","PeriodicalId":20608,"journal":{"name":"Proceedings of the Seventh ACM Conference on Learning @ Scale","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386527.3405950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Massive open online courses (MOOCs) provide a great opportunity to use multiple means of information representation through a mixture of various media such as text, graphics, and video, among others. However, most research on MOOCs focused on learning analytics and not much attention is given to content analysis. We gathered all text corpora and video transcripts of selected MOOCs using a web crawler and looked at word counts, clustered by distribution, and measured readability of the crawled data. Analyzing content distribution allows for a comparison of MOOCs regardless of topics, thus giving us an idea of what most course developers might think is ideal in terms of content distribution. This comparison along with readability analysis can be useful for course pre-run quality assessment and gauging content sufficiency.
mooc的内容类型、分布和可读性
大规模在线开放课程(MOOCs)提供了一个很好的机会,通过多种媒体的混合,如文本、图形和视频等,使用多种方式来表示信息。然而,大多数关于mooc的研究都集中在学习分析上,对内容分析的关注并不多。我们使用网络爬虫收集了选定mooc的所有文本语料库和视频抄本,并查看了单词计数,按分布聚类,并测量了抓取数据的可读性。分析内容分布可以让我们对不同主题的mooc进行比较,从而让我们了解大多数课程开发人员在内容分布方面可能认为的理想情况。这种比较以及可读性分析对于课程运行前的质量评估和测量内容充分性很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信