Compact Wideband Dual-Band SIW Bandpass Filters

IF 0.6 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Yun Jiang, Lei Huang, Zhaoyu Huang, Yuan Ye, Boyuan Liu, W. Yuan, N. Yuan
{"title":"Compact Wideband Dual-Band SIW Bandpass Filters","authors":"Yun Jiang, Lei Huang, Zhaoyu Huang, Yuan Ye, Boyuan Liu, W. Yuan, N. Yuan","doi":"10.47037/2021.aces.j.360919","DOIUrl":null,"url":null,"abstract":"─ A novel method to design compact wideband dual-band substrate integrated waveguide (SIW) bandpass filters (BPF) is proposed in this paper. By loading a novel beeline compact microstrip resonant cells (BCMRCs) with band-gap characteristics on top layer of SIW, two wide passbands separated by a stopband are generated. In order to enable the filter to have lower reflection coefficients in the two passbands, we use a tapered gradient line embedded with rectangular slots and loaded open stubs as the transition structure from microstrip line to SIW. The wideband dual-band BPF (DBBPF) is fabricated. The lower-band and upper-band fractional 3-dB bandwidths are 58.2% and 22.6%, while the measured minimum insertion losses (ILs) are 0.7 and 0.92 dB, respectively. The stepped-impedance openloop ring resonator (SIOLRR) is introduced in order to improve the selectivity of the filter. The wideband DBBPF with SIOLRR is studied, simulated and measured. Two transmission zeros are generated in the stop band between the two passbands. Good agreement between simulated and measured results can be obtained. Index Terms ─ Complementary split ring resonators, defected ground structure, dual-band bandpass filter, stepped-impedance open-loop ring resonator, substrate integrated waveguide.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2021.aces.j.360919","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

─ A novel method to design compact wideband dual-band substrate integrated waveguide (SIW) bandpass filters (BPF) is proposed in this paper. By loading a novel beeline compact microstrip resonant cells (BCMRCs) with band-gap characteristics on top layer of SIW, two wide passbands separated by a stopband are generated. In order to enable the filter to have lower reflection coefficients in the two passbands, we use a tapered gradient line embedded with rectangular slots and loaded open stubs as the transition structure from microstrip line to SIW. The wideband dual-band BPF (DBBPF) is fabricated. The lower-band and upper-band fractional 3-dB bandwidths are 58.2% and 22.6%, while the measured minimum insertion losses (ILs) are 0.7 and 0.92 dB, respectively. The stepped-impedance openloop ring resonator (SIOLRR) is introduced in order to improve the selectivity of the filter. The wideband DBBPF with SIOLRR is studied, simulated and measured. Two transmission zeros are generated in the stop band between the two passbands. Good agreement between simulated and measured results can be obtained. Index Terms ─ Complementary split ring resonators, defected ground structure, dual-band bandpass filter, stepped-impedance open-loop ring resonator, substrate integrated waveguide.
紧凑型宽带双带SIW带通滤波器
─提出一种设计紧凑型宽频带双频基板集成波导(SIW)带通滤波器(BPF)的新方法。通过将具有带隙特性的新型直线紧凑型微带谐振单元(BCMRCs)加载到SIW顶层,产生了以阻带分隔的两个宽通带。为了使滤波器在两个通带中具有较低的反射系数,我们使用嵌入矩形槽和加载开放存根的锥形梯度线作为微带线到SIW的过渡结构。制作了宽带双频双带BPF (DBBPF)。低频段和高频段分数3db带宽分别为58.2%和22.6%,而测量的最小插入损耗(ILs)分别为0.7和0.92 dB。为了提高滤波器的选择性,引入了阶跃阻抗开环环谐振器(SIOLRR)。对带SIOLRR的宽带DBBPF进行了研究、仿真和测量。在两个通带之间的阻带中产生两个传输零。模拟结果与实测结果吻合较好。索引术语─互补分环谐振器、缺陷接地结构、双带带通滤波器、阶跃阻抗开环环谐振器、衬底集成波导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
28.60%
发文量
75
审稿时长
9 months
期刊介绍: The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study. The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed. A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected. The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信