Traveling-wave meets standing-wave: A simulation study using pair-of-transverse-dipole-ring coils for adjustable longitudinal coverage in ultra-high field MRI

IF 0.9 4区 医学 Q4 CHEMISTRY, PHYSICAL
Xinqiang Yan, John C. Gore, William A. Grissom
{"title":"Traveling-wave meets standing-wave: A simulation study using pair-of-transverse-dipole-ring coils for adjustable longitudinal coverage in ultra-high field MRI","authors":"Xinqiang Yan,&nbsp;John C. Gore,&nbsp;William A. Grissom","doi":"10.1002/cmr.b.21402","DOIUrl":null,"url":null,"abstract":"<p>At ultrahigh fields (<i>B</i><sub>0</sub> ≥ 7T), it is challenging to cover a large field of view using single-row conventional RF coils (standing wave resonators) due to the limited physical dimensions. In contrast, traveling wave approaches can excite large fields of view even using a relatively simple hardware setup, but suffer from poor efficiency and high local specific absorption rate in non-imaged regions. In this study, we propose and numerically analyze a new coil which combines the concept of traveling wave and standing wave. The new coil consists of a pair of transverse dipole rings (PTDR) whose separation is adjusted according to the desired imaging coverage. The PTDR coil was validated using electromagnetic simulations in phantoms and human leg models, which showed that coverage can be as long as 60 cm. When the coverage of the PTDR coil was shortened to 20 cm to cover the knees only, it's transmit and specific absorption rate efficiencies were 84% and 37% higher than those of the 50 cm coverage, respectively.</p>","PeriodicalId":50623,"journal":{"name":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","volume":"48B 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmr.b.21402","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmr.b.21402","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 5

Abstract

At ultrahigh fields (B0 ≥ 7T), it is challenging to cover a large field of view using single-row conventional RF coils (standing wave resonators) due to the limited physical dimensions. In contrast, traveling wave approaches can excite large fields of view even using a relatively simple hardware setup, but suffer from poor efficiency and high local specific absorption rate in non-imaged regions. In this study, we propose and numerically analyze a new coil which combines the concept of traveling wave and standing wave. The new coil consists of a pair of transverse dipole rings (PTDR) whose separation is adjusted according to the desired imaging coverage. The PTDR coil was validated using electromagnetic simulations in phantoms and human leg models, which showed that coverage can be as long as 60 cm. When the coverage of the PTDR coil was shortened to 20 cm to cover the knees only, it's transmit and specific absorption rate efficiencies were 84% and 37% higher than those of the 50 cm coverage, respectively.

行波与驻波相遇:利用横向偶极环线圈在超高场MRI中可调纵向覆盖的模拟研究
在超高场(B0≥7T)下,由于物理尺寸有限,使用单排传统RF线圈(驻波谐振器)覆盖大视场是具有挑战性的。相比之下,行波方法即使使用相对简单的硬件设置也可以激发大视场,但在非成像区域效率低,局部比吸收率高。本文提出了一种结合行波和驻波概念的新型线圈,并对其进行了数值分析。新线圈由一对横向偶极环(PTDR)组成,其分离可根据所需的成像覆盖范围进行调整。PTDR线圈在人体模型和人体腿部模型上进行了电磁模拟,结果表明其覆盖范围可达60厘米。当PTDR线圈的覆盖面积缩短至20 cm仅覆盖膝盖时,其透射率和比吸收率效率分别比覆盖面积为50 cm时高84%和37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
3
审稿时长
>12 weeks
期刊介绍: Concepts in Magnetic Resonance Part B brings together engineers and physicists involved in the design and development of hardware and software employed in magnetic resonance techniques. The journal welcomes contributions predominantly from the fields of magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR), but also encourages submissions relating to less common magnetic resonance imaging and analytical methods. Contributors come from both academia and industry, to report the latest advancements in the development of instrumentation and computer programming to underpin medical, non-medical, and analytical magnetic resonance techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信