Deep Reinforcement Learning for Intelligent Reflecting Surface-assisted D2D Communications

Q2 Engineering
K. Nguyen, Antonino Masaracchia, Cheng Yin, L. Nguyen, O. Dobre, T. Duong
{"title":"Deep Reinforcement Learning for Intelligent Reflecting Surface-assisted D2D Communications","authors":"K. Nguyen, Antonino Masaracchia, Cheng Yin, L. Nguyen, O. Dobre, T. Duong","doi":"10.4108/eetinis.v10i1.2864","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a deep reinforcement learning (DRL) approach for solving the optimisation problem of the network’s sum-rate in device-to-device (D2D) communications supported by an intelligent reflecting surface (IRS). The IRS is deployed to mitigate the interference and enhance the signal between the D2D transmitter and the associated D2D receiver. Our objective is to jointly optimise the transmit power at the D2D transmitter and the phase shift matrix at the IRS to maximise the network sum-rate. We formulate a Markov decision process and then propose the proximal policy optimisation for solving the maximisation game. Simulation results show impressive performance in terms of the achievable rate and processing time.","PeriodicalId":33474,"journal":{"name":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","volume":"PP 1","pages":"e1"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetinis.v10i1.2864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose a deep reinforcement learning (DRL) approach for solving the optimisation problem of the network’s sum-rate in device-to-device (D2D) communications supported by an intelligent reflecting surface (IRS). The IRS is deployed to mitigate the interference and enhance the signal between the D2D transmitter and the associated D2D receiver. Our objective is to jointly optimise the transmit power at the D2D transmitter and the phase shift matrix at the IRS to maximise the network sum-rate. We formulate a Markov decision process and then propose the proximal policy optimisation for solving the maximisation game. Simulation results show impressive performance in terms of the achievable rate and processing time.
智能反射表面辅助D2D通信的深度强化学习
在本文中,我们提出了一种深度强化学习(DRL)方法来解决由智能反射面(IRS)支持的设备对设备(D2D)通信中网络求和速率的优化问题。部署IRS是为了减轻D2D发射器和相关D2D接收器之间的干扰并增强信号。我们的目标是共同优化D2D发射机的发射功率和IRS的相移矩阵,以最大限度地提高网络和速率。我们建立了一个马尔可夫决策过程,并在此基础上提出了求解最大化博弈的近端策略优化。仿真结果表明,该方法在可实现速率和处理时间方面具有令人印象深刻的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
15
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信