{"title":"Impacts of 240Pu self-shielding effect and uncertainties of σ(n,γ) at resonance energy on the reactivity controllability in HTGR inert matrix fuel","authors":"T. Aoki, H. Sagara, C. Han","doi":"10.15669/PNST.5.100","DOIUrl":null,"url":null,"abstract":"The resonance (n,γ) reaction of Pu is one of dominant phenomena to the self-shielding effect and the reactivity controllability in plutonium fuel for high temperature gas cooled reactors (HTGRs) aiming to deep-burning. Impacts of the mitigation of the self-shielding effect and nuclear data uncertainties for the resonance (n,γ) reaction of Pu on the reactivity controllability were investigated for various fuel design using MVP code. k∞ decreased from 1.3 to 1.05 and reactivity fluctuation decreased from 30% to 6% in the proposed inert matrix fuel (IMF) design with a dilution of the TRU oxide kernel and the neutron spectrum control because of mitigation of Pu self-shielding effect at 1.056-eV.","PeriodicalId":20706,"journal":{"name":"Progress in Nuclear Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15669/PNST.5.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The resonance (n,γ) reaction of Pu is one of dominant phenomena to the self-shielding effect and the reactivity controllability in plutonium fuel for high temperature gas cooled reactors (HTGRs) aiming to deep-burning. Impacts of the mitigation of the self-shielding effect and nuclear data uncertainties for the resonance (n,γ) reaction of Pu on the reactivity controllability were investigated for various fuel design using MVP code. k∞ decreased from 1.3 to 1.05 and reactivity fluctuation decreased from 30% to 6% in the proposed inert matrix fuel (IMF) design with a dilution of the TRU oxide kernel and the neutron spectrum control because of mitigation of Pu self-shielding effect at 1.056-eV.