Storage device performance prediction with CART models

Mengzhi Wang, Kinman Au, A. Ailamaki, A. Brockwell, C. Faloutsos, G. Ganger
{"title":"Storage device performance prediction with CART models","authors":"Mengzhi Wang, Kinman Au, A. Ailamaki, A. Brockwell, C. Faloutsos, G. Ganger","doi":"10.1145/1005686.1005743","DOIUrl":null,"url":null,"abstract":"Storage device performance prediction is a key element of self-managed storage systems. The paper explores the application of a machine learning tool, CART (classification and regression trees) models, to storage device modeling. Our approach predicts a device's performance as a function of input workloads, requiring no knowledge of the device internals. We propose two uses of CART models: one that predicts per-request response times (and then derives aggregate values); one that predicts aggregate values directly from workload characteristics. After being trained on the device in question, both provide accurate black-box models across a range of test traces from real environments. Experiments show that these models predict the average and 90th percentile response time with a relative error as low as 19%, when the training workloads are similar to the testing workloads, and interpolate well across different workloads.","PeriodicalId":32394,"journal":{"name":"Performance","volume":"33 1","pages":"588-595"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"175","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1005686.1005743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 175

Abstract

Storage device performance prediction is a key element of self-managed storage systems. The paper explores the application of a machine learning tool, CART (classification and regression trees) models, to storage device modeling. Our approach predicts a device's performance as a function of input workloads, requiring no knowledge of the device internals. We propose two uses of CART models: one that predicts per-request response times (and then derives aggregate values); one that predicts aggregate values directly from workload characteristics. After being trained on the device in question, both provide accurate black-box models across a range of test traces from real environments. Experiments show that these models predict the average and 90th percentile response time with a relative error as low as 19%, when the training workloads are similar to the testing workloads, and interpolate well across different workloads.
基于CART模型的存储设备性能预测
存储设备性能预测是实现自管理存储系统的关键。本文探讨了机器学习工具CART(分类和回归树)模型在存储设备建模中的应用。我们的方法将设备的性能预测为输入工作负载的函数,不需要了解设备内部的知识。我们提出了CART模型的两种用法:一种是预测每个请求的响应时间(然后得出汇总值);直接从工作负载特征预测汇总值。在接受有关设备的培训后,两者都可以在真实环境的一系列测试痕迹中提供准确的黑匣子模型。实验表明,当训练工作负载与测试工作负载相似时,这些模型预测平均和第90百分位响应时间的相对误差低至19%,并且在不同工作负载之间插值良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信