{"title":"An experimental comparison of complex object implementations for big data systems","authors":"Sourav Sikdar, Kia Teymourian, C. Jermaine","doi":"10.1145/3127479.3129248","DOIUrl":null,"url":null,"abstract":"Many cloud-based data management and analytics systems support complex objects. Dataflow platforms such as Spark and Flink allow programmers to manipulate sets consisting of objects from a host programming language (often Java). Document databases such as MongoDB make use of hierarchical interchange formats---most popularly JSON---which embody a data model where individual records can themselves contain sets of records. Systems such as Dremel and AsterixDB allow complex nesting of data structures. Clearly, no system designer would expect a system that stores JSON objects as text to perform at the same level as a system based upon a custom-built physical data model. The question we ask is: How significant is the performance hit associated with choosing a particular physical implementation? Is the choice going to result in a negligible performance cost, or one that is debilitating? Unfortunately, there does not exist a scientific study of the effect of physical complex model implementation on system performance in the literature. Hence it is difficult for a system designer to fully understand performance implications of such choices. This paper is an attempt to remedy that.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3129248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Many cloud-based data management and analytics systems support complex objects. Dataflow platforms such as Spark and Flink allow programmers to manipulate sets consisting of objects from a host programming language (often Java). Document databases such as MongoDB make use of hierarchical interchange formats---most popularly JSON---which embody a data model where individual records can themselves contain sets of records. Systems such as Dremel and AsterixDB allow complex nesting of data structures. Clearly, no system designer would expect a system that stores JSON objects as text to perform at the same level as a system based upon a custom-built physical data model. The question we ask is: How significant is the performance hit associated with choosing a particular physical implementation? Is the choice going to result in a negligible performance cost, or one that is debilitating? Unfortunately, there does not exist a scientific study of the effect of physical complex model implementation on system performance in the literature. Hence it is difficult for a system designer to fully understand performance implications of such choices. This paper is an attempt to remedy that.