Marshall–Olkin Power Generalized Weibull Distribution with Applications in Engineering and Medicine

IF 1 Q3 Mathematics
A. Afify, D. Kumar, I. Elbatal
{"title":"Marshall–Olkin Power Generalized Weibull Distribution with Applications in Engineering and Medicine","authors":"A. Afify, D. Kumar, I. Elbatal","doi":"10.2991/jsta.d.200507.004","DOIUrl":null,"url":null,"abstract":"This paper proposes a new flexible four-parameter model called Marshall – Olkin power generalized Weibull (MOPGW) distribution which provides symmetrical, reversed-J shaped, left-skewed and right-skewed densities, and bathtub, unimodal, increas-ing,constant,decreasing,Jshaped,andreversed-Jshapedhazardrates.SomeoftheMOPGWstructuralpropertiesarediscussed.ThemaximumlikelihoodisutilizedtoestimatetheMOPGWunknownparameters.Simulationresultsareprovidedtoassesstheperformanceofthemaximumlikelihoodmethod.Finally,weillustratetheimportanceoftheMOPGWmodel,comparedwithsomerivalmodels,viatworealdataapplicationsfromtheengineeringandmedicinefields.","PeriodicalId":45080,"journal":{"name":"Journal of Statistical Theory and Applications","volume":"33 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/jsta.d.200507.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 12

Abstract

This paper proposes a new flexible four-parameter model called Marshall – Olkin power generalized Weibull (MOPGW) distribution which provides symmetrical, reversed-J shaped, left-skewed and right-skewed densities, and bathtub, unimodal, increas-ing,constant,decreasing,Jshaped,andreversed-Jshapedhazardrates.SomeoftheMOPGWstructuralpropertiesarediscussed.ThemaximumlikelihoodisutilizedtoestimatetheMOPGWunknownparameters.Simulationresultsareprovidedtoassesstheperformanceofthemaximumlikelihoodmethod.Finally,weillustratetheimportanceoftheMOPGWmodel,comparedwithsomerivalmodels,viatworealdataapplicationsfromtheengineeringandmedicinefields.
Marshall-Olkin幂广义威布尔分布及其在工程和医学上的应用
本文提出了一种新的柔性四参数模型Marshall - Olkin power广义Weibull (MOPGW)分布,该分布提供对称、倒j形、左偏和右偏密度,以及浴缸、单峰、increas-ing,不变,减少,Jshaped、andreversed-Jshapedhazardrates.SomeoftheMOPGWstructuralpropertiesarediscussed.ThemaximumlikelihoodisutilizedtoestimatetheMOPGWunknownparameters.Simulationresultsareprovidedtoassesstheperformanceofthemaximumlikelihoodmethod.Finally weillustratetheimportanceoftheMOPGWmodel, comparedwithsomerivalmodels viatworealdataapplicationsfromtheengineeringandmedicinefields。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信