EPIDEMIC INDIVIDUAL-BASED MODELS APPLIED IN RANDOM AND SCALE-FREE NETWORKS

Q4 Medicine
Christofer Roque Ribeiro Silva, A. Almeida, R. N. Cardoso, R. Takahashi
{"title":"EPIDEMIC INDIVIDUAL-BASED MODELS APPLIED IN RANDOM AND SCALE-FREE NETWORKS","authors":"Christofer Roque Ribeiro Silva, A. Almeida, R. N. Cardoso, R. Takahashi","doi":"10.28951/rbb.v38i1.421","DOIUrl":null,"url":null,"abstract":"This work proposes a version of the Individual-Based Model (IBM) that converges, on average, to the result of the SIR (Susceptible-Infected-Recovered) model, and studies the effect of this IBM in two types of networks: random and scale-free. A numerical computational case study is considered, using large scale networks implemented by an efficient framework. Statistical tests are performed to show the similarities and differences between the network models and the deterministic model taken as a baseline. Simulation results verify that different network topologies alter the behavior of the epidemic propagation in the following aspects: temporal evolution, basal reproducibility and the number of infected in the final.","PeriodicalId":36293,"journal":{"name":"Revista Brasileira de Biometria","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Biometria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28951/rbb.v38i1.421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

Abstract

This work proposes a version of the Individual-Based Model (IBM) that converges, on average, to the result of the SIR (Susceptible-Infected-Recovered) model, and studies the effect of this IBM in two types of networks: random and scale-free. A numerical computational case study is considered, using large scale networks implemented by an efficient framework. Statistical tests are performed to show the similarities and differences between the network models and the deterministic model taken as a baseline. Simulation results verify that different network topologies alter the behavior of the epidemic propagation in the following aspects: temporal evolution, basal reproducibility and the number of infected in the final.
流行病个体模型在随机无标度网络中的应用
这项工作提出了一个基于个人的模型(IBM)的版本,该模型平均收敛于SIR(易感-感染-恢复)模型的结果,并研究了这种IBM在两种类型的网络中的影响:随机网络和无标度网络。考虑了一个数值计算案例研究,使用由高效框架实现的大规模网络。进行统计测试,以显示网络模型和确定性模型作为基线之间的异同。仿真结果验证了不同的网络拓扑结构在时间演化、基础重现性和最终感染人数等方面改变了流行病的传播行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista Brasileira de Biometria
Revista Brasileira de Biometria Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
自引率
0.00%
发文量
0
审稿时长
53 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信