Integral representations of the generating function of the Riemann zeta function of integer arguments

K. Adegoke, A. Olatinwo
{"title":"Integral representations of the generating function of the Riemann zeta function of integer arguments","authors":"K. Adegoke, A. Olatinwo","doi":"10.4314/ijs.v25i1.3","DOIUrl":null,"url":null,"abstract":"In this article we give new integral representations for the ordinary generating functions of ζ(2n), nζ(2n+1) and ζ(2n+1) for n∈ Z*, n≥1; where  ζ(j) is the Riemann zeta function. We also give closed form expressionsfor the generating functions.","PeriodicalId":13487,"journal":{"name":"Ife Journal of Science","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ife Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/ijs.v25i1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we give new integral representations for the ordinary generating functions of ζ(2n), nζ(2n+1) and ζ(2n+1) for n∈ Z*, n≥1; where  ζ(j) is the Riemann zeta function. We also give closed form expressionsfor the generating functions.
整数参数的黎曼ζ函数的生成函数的积分表示
本文给出了对于n∈Z*, n≥1时ζ(2n), nζ(2n+1), ζ(2n+1)的普通生成函数的新的积分表示;其中ζ(j)是黎曼函数。我们还给出了生成函数的封闭表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信