The localized method of approximate particular solutions for solving an optimal control problem

Kwesi Acheampong , Hongbo Guan , Huiqing Zhu
{"title":"The localized method of approximate particular solutions for solving an optimal control problem","authors":"Kwesi Acheampong ,&nbsp;Hongbo Guan ,&nbsp;Huiqing Zhu","doi":"10.1016/j.jcmds.2022.100038","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the localized method of approximate particular solutions (LMAPS) for solving a two-dimensional distributive optimal control problem governed by elliptic partial differential equations. Both radial basis functions and polynomial basis functions (RBFs) are used in the LMAPS discretization, while the leave-one-out cross-validation is adopted for the selection of the shape parameter appeared in RBFs. Numerical experiments are presented to demonstrate the accuracy and efficiency of the proposed method.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"3 ","pages":"Article 100038"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415822000098/pdfft?md5=7a88a8c30fe0636f48d4081f589fccf5&pid=1-s2.0-S2772415822000098-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415822000098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the localized method of approximate particular solutions (LMAPS) for solving a two-dimensional distributive optimal control problem governed by elliptic partial differential equations. Both radial basis functions and polynomial basis functions (RBFs) are used in the LMAPS discretization, while the leave-one-out cross-validation is adopted for the selection of the shape parameter appeared in RBFs. Numerical experiments are presented to demonstrate the accuracy and efficiency of the proposed method.

求解最优控制问题的近似特解的局部化方法
本文研究了一类椭圆型偏微分方程的二维分布最优控制问题的近似特解的局部化方法。LMAPS离散化采用径向基函数和多项式基函数(rbf),对rbf中出现的形状参数选择采用留一交叉验证。数值实验验证了该方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信