On the Strength and Independence Number of Graphs

IF 0.4 4区 数学 Q4 MATHEMATICS
Rikio Ichishima, F. Muntaner-Batle, Yukio Takahashi
{"title":"On the Strength and Independence Number of Graphs","authors":"Rikio Ichishima, F. Muntaner-Batle, Yukio Takahashi","doi":"10.47443/cm.2022.036","DOIUrl":null,"url":null,"abstract":"A numbering f of a graph G of order n is a labeling that assigns distinct elements of the set { 1 , 2 , . . . , n } to the vertices of G . The strength str f ( G ) of a numbering f : V ( G ) → { 1 , 2 , . . . , n } of G is defined by str f ( G ) = max { f ( u ) + f ( v ) | uv ∈ E ( G ) } , that is, str f ( G ) is the maximum edge label of G and the strength str ( G ) of a graph G itself is the minimum of the set { str f ( G ) | f is a numbering of G } . In this paper, we present a necessary and sufficient condition for the strength of a graph G of order n to meet the constraints str ( G ) = 2 n − 2 β ( G ) + 1 and str ( G ) = n + δ ( G ) = 2 n − 2 β ( G ) + 1 , where β ( G ) and δ ( G ) denote the independence number and the minimum degree of G , respectively. This answers open problems posed by Gao, Lau, and Shiu [ Symmetry 13 (2021) #513]. Also, an earlier result leads us to determine a formula for the strength of graphs containing a particular class of graphs as a subgraph. We also extend what is known in the literature about k -stable properties.","PeriodicalId":48938,"journal":{"name":"Contributions To Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions To Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.47443/cm.2022.036","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

A numbering f of a graph G of order n is a labeling that assigns distinct elements of the set { 1 , 2 , . . . , n } to the vertices of G . The strength str f ( G ) of a numbering f : V ( G ) → { 1 , 2 , . . . , n } of G is defined by str f ( G ) = max { f ( u ) + f ( v ) | uv ∈ E ( G ) } , that is, str f ( G ) is the maximum edge label of G and the strength str ( G ) of a graph G itself is the minimum of the set { str f ( G ) | f is a numbering of G } . In this paper, we present a necessary and sufficient condition for the strength of a graph G of order n to meet the constraints str ( G ) = 2 n − 2 β ( G ) + 1 and str ( G ) = n + δ ( G ) = 2 n − 2 β ( G ) + 1 , where β ( G ) and δ ( G ) denote the independence number and the minimum degree of G , respectively. This answers open problems posed by Gao, Lau, and Shiu [ Symmetry 13 (2021) #513]. Also, an earlier result leads us to determine a formula for the strength of graphs containing a particular class of graphs as a subgraph. We also extend what is known in the literature about k -stable properties.
论图的强度和独立数
一个n阶图G的编号f是一个标记,它分配了集合{1,2,…, n}到G的顶点。编号f的强度str f (G): V (G)→{1,2,…n}的G是由str f (G) = max {(u) + f (v) |紫外线∈E (G)},也就是说,str f (G)是G的最大边的标签和力量str图G (G)本身是最低的组{str f (G) | f是一个G的编号}。在本文中,我们提出一个充分必要条件的强度图G (n满足约束str (G) = 2 n−2β(G) + 1和str (G) = n +δ(G) = 2 n−2β(G) + 1,在β(G)和δ(G)表示独立号码和G的最低程度,分别。这回答了Gao、Lau和Shiu [Symmetry 13(2021) #513]提出的开放性问题。此外,前面的一个结果使我们确定了包含特定类图作为子图的图的强度公式。我们也推广了文献中已知的k稳定性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Contributions to Discrete Mathematics (ISSN 1715-0868) is a refereed e-journal dedicated to publishing significant results in a number of areas of pure and applied mathematics. Based at the University of Calgary, Canada, CDM is free for both readers and authors, edited and published online and will be mirrored at the European Mathematical Information Service and the National Library of Canada.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信