VibroScale

Shibo Zhang, Qiuyang Xu, Sougata Sen, N. Alshurafa
{"title":"VibroScale","authors":"Shibo Zhang, Qiuyang Xu, Sougata Sen, N. Alshurafa","doi":"10.1145/3410530.3414397","DOIUrl":null,"url":null,"abstract":"Smartphones, with their ubiquity and plethora of embedded sensors enable on-the-go measurement. Here, we describe one novel measurement potential, weight measurement, by turning an everyday smartphone into a weighing scale. We describe VibroScale, our vibration-based approach to measuring the weight of objects that are small in size. Being able to objectively measure the weight of objects in free-living settings, without the burden of carrying a scale, has several possible uses, particularly in weighing small food items. We designed a smartphone app and regression algorithm, which we termed VibroScale, that estimates the relative induced intensity of an object placed on the smartphone. We tested our proposed method using more than 50 fruits and other everyday objects of different sizes and weights. Our smartphone-based method can measure the weight of fruit without relying on an actual scale. Overall, we observed that VibroScale can measure one type of object with a mean absolute error of 12.4 grams and a mean absolute percentage error of 7.7%. We believe that in future this approach can be generalized to estimate calories and measure the weight of various types of objects.","PeriodicalId":7183,"journal":{"name":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","volume":"241 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3410530.3414397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Smartphones, with their ubiquity and plethora of embedded sensors enable on-the-go measurement. Here, we describe one novel measurement potential, weight measurement, by turning an everyday smartphone into a weighing scale. We describe VibroScale, our vibration-based approach to measuring the weight of objects that are small in size. Being able to objectively measure the weight of objects in free-living settings, without the burden of carrying a scale, has several possible uses, particularly in weighing small food items. We designed a smartphone app and regression algorithm, which we termed VibroScale, that estimates the relative induced intensity of an object placed on the smartphone. We tested our proposed method using more than 50 fruits and other everyday objects of different sizes and weights. Our smartphone-based method can measure the weight of fruit without relying on an actual scale. Overall, we observed that VibroScale can measure one type of object with a mean absolute error of 12.4 grams and a mean absolute percentage error of 7.7%. We believe that in future this approach can be generalized to estimate calories and measure the weight of various types of objects.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信