Diagonal preconditioning for first order primal-dual algorithms in convex optimization

T. Pock, A. Chambolle
{"title":"Diagonal preconditioning for first order primal-dual algorithms in convex optimization","authors":"T. Pock, A. Chambolle","doi":"10.1109/ICCV.2011.6126441","DOIUrl":null,"url":null,"abstract":"In this paper we study preconditioning techniques for the first-order primal-dual algorithm proposed in [5]. In particular, we propose simple and easy to compute diagonal preconditioners for which convergence of the algorithm is guaranteed without the need to compute any step size parameters. As a by-product, we show that for a certain instance of the preconditioning, the proposed algorithm is equivalent to the old and widely unknown alternating step method for monotropic programming [7]. We show numerical results on general linear programming problems and a few standard computer vision problems. In all examples, the preconditioned algorithm significantly outperforms the algorithm of [5].","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"461","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 461

Abstract

In this paper we study preconditioning techniques for the first-order primal-dual algorithm proposed in [5]. In particular, we propose simple and easy to compute diagonal preconditioners for which convergence of the algorithm is guaranteed without the need to compute any step size parameters. As a by-product, we show that for a certain instance of the preconditioning, the proposed algorithm is equivalent to the old and widely unknown alternating step method for monotropic programming [7]. We show numerical results on general linear programming problems and a few standard computer vision problems. In all examples, the preconditioned algorithm significantly outperforms the algorithm of [5].
凸优化中一阶原对偶算法的对角预处理
本文研究了[5]中提出的一阶原对偶算法的预处理技术。特别地,我们提出了简单且易于计算的对角预条件,保证了算法的收敛性,而无需计算任何步长参数。作为一个副产品,我们证明了对于一定的预处理实例,所提出的算法等价于单调规划[7]的旧的和广泛未知的交替步进方法。我们给出了一般线性规划问题和一些标准计算机视觉问题的数值结果。在所有示例中,预条件算法明显优于[5]算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信